Citation: | QI Zhao-hui, FANG Hui-qing, ZHANG Zhi-gang, WANG Gang. Geometric Nonlinear Spatial Beam Elements With Curvature Interpolations[J]. Applied Mathematics and Mechanics, 2014, 35(5): 498-509. doi: 10.3879/j.issn.1000-0887.2014.05.004 |
[1] |
Kwak H-G, Kim D-Y, Lee H-W. Effect of warping in geometric nonlinear analysis of spatial beams[J].Journal of Constructional Steel Research,2001,57(7): 729-751.
|
[2] |
Pai P F, Anderson T J, Wheater E A. Large-deformation tests and total-Lagrangian finite-element analyses of flexible beams[J].International Journal of Solids and Structures,2000,37(21): 2951-2980.
|
[3] |
Hsiao K M, Lin J Y, Lin W Y. A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams[J].Computer Methods in Applied Mechanics and Engineering,1999,169(1/2): 1-18.
|
[4] |
Teh L H, Clarke M J. Co-rotational and Lagrangian formulations for elastic three-dimensional beam finite elements[J].Journal of Constructional Steel Research,1998,48(2/3): 123-144.
|
[5] |
Wu S-C, Haug E J. Geometric non-linear substructuring for dynamics of flexible mechanical systems[J].International Journal for Numerical Methods in Engineering,1988,26(10): 2211-2226.
|
[6] |
Simo J C. A finite strain beam formulation. the three-dimensional dynamic problem—part Ⅰ[J].Computer Methods in Applied Mechanics and Engineering,1985,49(1): 55-70.
|
[7] |
Simo J C, Vu-Quoc L. A three-dimensional finite-strain rod model—part Ⅱ: computational aspects[J].Computer Methods in Applied Mechanics and Engineering,1986,58(1): 79-116.
|
[8] |
Beléndez T, Neipp C, Beléndez A. Large and small deflections of a cantilever beam[J].European Journal of Physics,2002,23(3): 371-379.
|
[9] |
Banerjee A, Bhattacharya B, Mallik A K. Large deflection of cantilever beams with geometric non-linearity: analytical and numerical approaches[J].International Journal of Non-Linear Mechanics,2008,43(5): 366-376.
|
[10] |
Yakoub R Y, Shabana A A. Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications[J].Journal of Mechanical Design,2001,123(4): 614-621.
|
[11] |
Sopanen J T, Mikkola A M. Description of elastic forces in absolute nodal coordinate formulation[J].Nonlinear Dynamics,2003,34(1/2): 53-74.
|
[12] |
Romero I. A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations[J].Multibody System Dynamics,2008,20(1): 51-68.
|
[13] |
Jonker J B, Meijaard J P. A geometrically non-linear formulation of a three-dimensional beam element for solving large deflection multibody system problems[J].International Journal of Non-Linear Mechanics,2013,53: 63-74.
|
[14] |
Reissner E. On one-dimensional finite-strain beam theory: the plane problem[J].Zeitschrift für angewandte Mathematik und Physik ZAMP,1972,23(5): 795-804.
|
[15] |
Reissner E. On one-dimensional large-displacement finite-strain beam theory[J].Studies in Applied Mathematics,1973,52(2): 87-95.
|
[16] |
Mattiasson K. Numerical results from large deflection beam and frame problems analyzed by means of elliptic integrals[J].International Journal for Numerical Methods in Engineering,1981,17(1): 145-153.
|