XIE Chi-yu, ZHANG Jian-ying, WANG Mo-ran. Lattice Boltzmann Simulation of Droplet Evaporation on Flat Solid Surface[J]. Applied Mathematics and Mechanics, 2014, 35(3): 247-253. doi: 10.3879/j.issn.1000-0887.2014.03.002
Citation: XIE Chi-yu, ZHANG Jian-ying, WANG Mo-ran. Lattice Boltzmann Simulation of Droplet Evaporation on Flat Solid Surface[J]. Applied Mathematics and Mechanics, 2014, 35(3): 247-253. doi: 10.3879/j.issn.1000-0887.2014.03.002

Lattice Boltzmann Simulation of Droplet Evaporation on Flat Solid Surface

doi: 10.3879/j.issn.1000-0887.2014.03.002
Funds:  The National Natural Science Foundation of China(51176089); The National Basic Research Program of China (973 Program)(2013CB228301)
  • Received Date: 2013-09-28
  • Rev Recd Date: 2013-12-17
  • Publish Date: 2014-03-15
  • Mechanisms of droplet evaporation on flat solid surface were investigated with the Lattice Boltzmann method. Effect of gravity on the droplet shape change during evaporation in the cases of different static contact angles was detailedly analyzed. The results show that, as the droplet size decreases, the gravity effect decreases; and when the size reaches a critical value, the gravity effect grows negligible. This critical value for a water droplet was calculated for specific parameters, which was 50% lower than the value given by the classical capillary theory. Moreover, the inside-droplet flow patterns are also considerably influenced by gravity and the droplet size.
  • loading
  • [1]
    Kim J-H, Ahn S I, Kim J H, Zin W-C. Evaporation of water droplets on polymer surfaces[J]. Langmuir,2007,23(11): 6163-6169.
    [2]
    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Capillary flow as the cause of ring stains from dried liquid drops[J].Nature,1997,389(6653): 827-829.
    [3]
    Yunker P J, Still T, Lohr M A, Yodh A G. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature,2011,476(7360): 308-311.
    [4]
    Malaquin L, Kraus T, Schmid H, Delamarche E, Wolf H. Controlled particle placement through convective and capillary assembly[J]. Langmuir,2007,23(23): 11513-11521.
    [5]
    Hu H, Larson R G. Evaporation of a sessile droplet on a substrate[J].The Journal of Physical Chemistry B,2002,106(6): 1334-1344.
    [6]
    Wong T-S, Chen T-H, Shen X, Ho C-M. Nanochromatography driven by the coffee ring effect[J]. Analytical Chemistry,2011,83(6): 1871-1873.
    [7]
    Brutin D, Zhu Z, Rahli O, Xie J, Liu Q, Tadrist L. Sessile drop in microgravity: creation, contact angle and interface[J].Microgravity Science and Technology,2009,21(1): 67-76.
    [8]
    Cazabat A-M, Guena G. Evaporation of macroscopic sessile droplets[J].Soft Matter,2010,6(12): 2591-2612.
    [9]
    Gelderblom H, Marín G, Nair H, Van Houselt A, Lefferts L, Snoeijer J H, Lohse D. How water droplets evaporate on a superhydrophobic substrate[J].Physical Review E,2011,83(2): 026306.
    [10]
    Ruiz O E, Black W Z. Evaporation of water droplets placed on a heated horizontal surface[J].Journal of Heat Transfer,2002,124(5): 854-863.
    [11]
    Chen S, Doolen G D. Lattice Boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998,30(1): 329-364.
    [12]
    Aidun C K, Clausen J R. Lattice-Boltzmann method for complex flows[J].Annual Review of Fluid Mechanics,2010,42(1): 439-472.
    [13]
    Wang M, Kang Q. Electrokinetic transport in microchannels with random roughness[J].Analytical Chemistry,2009,81(8): 2953-2961.
    [14]
    Wang M. Structure effects on electro-osmosis in microporous media[J]. Journal of Heat Transfer,2012,134(5): 051020.
    [15]
    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G. Lattice Boltzmann model of immiscible fluids[J].Physical Review A,1991,43(8): 4320-4327.
    [16]
    Gunstensen A K, Rothman D H. Lattice-Boltzmann studies of immiscible two-phase flow through porous media[J].Journal of Geophysical Research,1993,98(B4): 6431-6441.
    [17]
    Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components[J].Physical Review E,1993,47(3): 1815-1819.
    [18]
    Swift M R, Osborn W R, Yeomans J M. Lattice Boltzmann simulation of nonideal fluids[J].Physical Review Letters,1995,〖STHZ〗75(5): 830-833.
    [19]
    He X, Chen S, Doolen G D. A novel thermal model for the lattice Boltzmann method in incompressible limit[J].Journal of Computational Physics,1998,146(1): 282-300.
    [20]
    He X, Chen S, Zhang R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability[J].Journal of Computational Physics,1999,152(2): 642-663.
    [21]
    Zheng H W, Shu C, Chew Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J].Journal of Computational Physics,2006,218(1): 353-371.
    [22]
    Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions[J].The Journal of Physical Chemistry B,2006,110(14): 7090-7094.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1935) PDF downloads(1105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return