Citation: | ZHONG Wan-xie, GAO Qiang. Symplectic Group of the Transfer Matrix Converges to the Symplectic Lie Group[J]. Applied Mathematics and Mechanics, 2013, 34(6): 547-551. doi: 10.3879/j.issn.1000-0887.2013.06.001 |
[1] |
Goldstein H.Classical Mechanics[M]. 3rd ed. London: AddisonWesley, 2002.
|
[2] |
Arnold V I.Mathematical Methods of Classical Mechanics[M]. New York: SpringerVerlag, 1989.
|
[3] |
冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州:浙江科学技术出版社,2003. (FENG Kang, QIN Meng-zhao.Symplectic Geometric Algorithms for Hamiltonian Systems[M]. Hangzhou:Zhejiang Science & Technology Press, 2003.(in Chinese))
|
[4] |
Hairer E, Lubich C, Wanner G.Geometric Numerical Integration: Structure-Preserving Algorithm for Ordinary Differential Equations[M]. New York: Springer, 2006.
|
[5] |
Hairer E, Norsett S P, Wanner G.Solving Ordinary Differential Equations INonstiff Problem[M]. 2nd ed. Berlin: Springer, 1993.
|
[6] |
Hairer E, Lubich C, Wanner G.Geometric Numerical Integration: Structure-Preserving Algorithm for Ordinary Differential Equations[M]. 2nd ed. New York: Springer, 2006.
|
[7] |
钟万勰.分析结构力学与有限元[J]. 动力学与控制学报, 2004, 2(4):18.(ZHONG Wan-xie. Analytical structural mechanics and finite element[J].Journal of Dynamics and Control, 2004, 2(4):18.(in Chinese))
|
[8] |
钟万勰, 姚征. 时间有限元与保辛[J]. 机械强度, 2005, 27(2):178183.(ZHONG Wan-xie, YAO Zheng. Time domain FEM and symplectic conservation[J].Journal of Mechanical Strength ,2005, 27(2):178183.(in Chinese))
|
[9] |
钟万勰, 高强.约束动力系统的分析结构力学积分[J]. 动力学与控制, 2006, 4(3):193200.(ZHONG Wan-xie, GAO Qiang. Integration of constrained dynamical system via analytical structural mechanics[J]. Journal of Dynamics and Control, 2006, 4(3):193200.(in Chinese))
|
[10] |
钟万勰, 高强.辛破茧[M].大连:大连理工大学出版社, 2011.(ZHONG Wan-xie, GAO Qiang.Break the Limitation of Symplecticity[M]. Dalian: Dalian University of Technology Press, 2011.(in Chinese))
|
[11] |
钟万勰. 力、功、能量与辛数学[M]. 大连:大连理工大学出版社, 2007.(ZHONG Wan-xie.Force, Work, Energy and Sympletic Mathematics[M]. Dalian: Dalian University of Technology Press, 2007.(in Chinese))
|
[12] |
Gao Q, Tan S J, Zhang H W, Zhong W X. Symplectic algorithms based on the principle of least action and generating functions[J].International Journal for Numerical Methods in Engineering, 2012, 89(4): 438508.
|