Citation: | ZHANG Qiao-fu, CUI Jun-zhi. Existence Theory for Rosseland Equation and Its Homogenized Equation[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1487-1502. doi: 10.3879/j.issn.1000-0887.2012.12.010 |
[1] |
ZHANG Qiao-fu, CUI Jun-zhi.Multi-scale analysis method for combined conductionradiation heat transfer of periodic composites[C]//Advances in Heterogeneous Material Mechanics. Lancaster: DEStech Publications, 2011: 461-464.
|
[2] |
Modest M F. Radiative Heat Transfer[M]. 2nd. San Diego: McGrawHill, 2003: 450-453.
|
[3] |
Laitinen M T. Asymptotic analysis of conductiveradiative heat transfer[J]. Asymptotic Analysis, 2002, 29(3): 323-342.
|
[4] |
Griepentrog J A, Recke L. Linear elliptic boundary value problems with non-smooth data: normal solvability on SobolevCampanato spaces[J]. Math Nachr, 2001, 225(1): 39-74.
|
[5] |
ZHANG Qiao-fu. Divergence form nonlinear nonsmooth parabolic equations with locally arbitrary growth conditions and nonlinear maximal regularity. arXivPreprint[math.AP], 2012, arXiv:1205.3237v1.
|
[6] |
Gröger K. A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations[J].Math Ann, 1989, 283(4): 679-687.
|
[7] |
WU Zhuo-qun, YIN Jing-xue, WANG Chun-peng. Elliptic and Parabolic Equations[M].Singapore: World Scientific, 2006: 105-111.
|
[8] |
Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order[M].Berlin: Springer, 2001: 171-280.
|
[9] |
ZHANG Qiao-fu. Divergence form nonlinear nonsmooth elliptic equations with locally arbitrary growth conditions and nonlinear maximal regularity. arXivPreprint[math.AP], 2012, arXiv:1205.2412v1.
|
[10] |
ZHANG Qiao-fu, CUI Jun-zhi. Regularity of the correctors and local gradient estimate of the homogenization for the elliptic equation: linear periodic case. arXivPreprint[math.AP], 2011, arXiv: 1109.1107v1.
|
[11] |
Cioranescu D, Donato P. An Introduction to Homogenization[M].Oxford: Oxford University Press, 1999: 33-140.
|
[12] |
Fusco N, Moscariello G. On the homogenization of quasilinear divergence structure operators[J].Annali di Matematica Pura ed Applicata, 1986, 146(1): 1-13.
|
[13] |
Avellaneda M, Lin F H. Compactness method in the theory of homogenization[J].Comm Pure Appl Math, 1987, 40(6): 803-847.
|
[14] |
Kenig C E, Lin F H, Shen Z W. Homogenization of elliptic systems with Neumann boundary conditions. arXivPreprint[math.AP], 2010, arXiv: 1010.6114v1.
|
[15] |
HE Wen-ming, CUI Jun-zhi.Error estimate of the homogenization solution for elliptic problems with small periodic coefficients on L∞(Ω)[J]. Science China Mathematics, 2010, 53(5): 1231-1252.
|
[16] |
HE Wen-ming, CUI Jun-zhi. A finite element method for elliptic problems with rapidly oscillating coefficients[J].BIT Numerical Mathematics, 2007, 47: 77-102.
|