ZHANG Qiao-fu, CUI Jun-zhi. Existence Theory  for Rosseland Equation and Its Homogenized Equation[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1487-1502. doi: 10.3879/j.issn.1000-0887.2012.12.010
Citation: ZHANG Qiao-fu, CUI Jun-zhi. Existence Theory  for Rosseland Equation and Its Homogenized Equation[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1487-1502. doi: 10.3879/j.issn.1000-0887.2012.12.010

Existence Theory  for Rosseland Equation and Its Homogenized Equation

doi: 10.3879/j.issn.1000-0887.2012.12.010
  • Received Date: 2011-12-01
  • Rev Recd Date: 2012-06-15
  • Publish Date: 2012-12-15
  • The global boundness and existence were presented for the kind of Rosseland equation with a general growth condition.A linearized map  in a closed convex set was defined. The image set was precompact and this map was continuous, so  there existed a  fixed point. The Multiple-scale expansion method was used to obtain the homogenized equation.This equation satisfied a similar growth condition.
  • loading
  • [1]
    ZHANG Qiao-fu, CUI Jun-zhi.Multi-scale analysis method for combined conductionradiation heat transfer of periodic composites[C]//Advances in Heterogeneous Material Mechanics. Lancaster: DEStech Publications, 2011: 461-464. 
    [2]
    Modest M F. Radiative Heat Transfer[M]. 2nd. San Diego: McGrawHill, 2003: 450-453. 
    [3]
    Laitinen M T. Asymptotic analysis of conductiveradiative heat transfer[J]. Asymptotic Analysis, 2002, 29(3): 323-342. 
    [4]
    Griepentrog J A, Recke L. Linear elliptic boundary value problems with non-smooth data: normal solvability on SobolevCampanato spaces[J]. Math Nachr, 2001, 225(1): 39-74. 
    [5]
    ZHANG Qiao-fu. Divergence form nonlinear nonsmooth parabolic equations with locally arbitrary growth conditions and nonlinear maximal regularity. arXivPreprint[math.AP], 2012, arXiv:1205.3237v1. 
    [6]
    Gröger K. A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations[J].Math Ann, 1989, 283(4): 679-687.
    [7]
    WU Zhuo-qun, YIN Jing-xue, WANG Chun-peng. Elliptic and Parabolic Equations[M].Singapore: World Scientific, 2006: 105-111. 
    [8]
    Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order[M].Berlin: Springer, 2001: 171-280. 
    [9]
    ZHANG Qiao-fu. Divergence form nonlinear nonsmooth elliptic equations with locally arbitrary growth conditions and nonlinear maximal regularity. arXivPreprint[math.AP], 2012, arXiv:1205.2412v1. 
    [10]
    ZHANG Qiao-fu, CUI Jun-zhi. Regularity of the correctors and local gradient estimate of the homogenization for the elliptic equation: linear periodic case. arXivPreprint[math.AP], 2011, arXiv: 1109.1107v1. 
    [11]
    Cioranescu D, Donato P. An Introduction to Homogenization[M].Oxford: Oxford University Press, 1999: 33-140. 
    [12]
    Fusco N, Moscariello G. On the homogenization of quasilinear divergence structure operators[J].Annali di Matematica Pura ed Applicata, 1986, 146(1): 1-13. 
    [13]
    Avellaneda M, Lin F H. Compactness method in the theory of homogenization[J].Comm Pure Appl Math, 1987, 40(6): 803-847. 
    [14]
    Kenig C E, Lin F H, Shen Z W. Homogenization of elliptic systems with Neumann boundary conditions. arXivPreprint[math.AP], 2010, arXiv: 1010.6114v1. 
    [15]
    HE Wen-ming, CUI Jun-zhi.Error estimate of the homogenization solution for elliptic problems with small periodic coefficients on L∞(Ω)[J]. Science China Mathematics, 2010, 53(5): 1231-1252. 
    [16]
    HE Wen-ming, CUI Jun-zhi. A finite element method for elliptic problems with rapidly oscillating coefficients[J].BIT Numerical Mathematics, 2007, 47: 77-102.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1980) PDF downloads(1135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return