YAO Jing-sun, OUYANG Cheng, CHEN Li-hua, MO Jia-qi. Approximate Solving Method of Shock for Nonlinear Disturbed Coupled Schrödinger System[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1477-1486. doi: 10.3879/j.issn.1000-0887.2012.12.009
Citation: YAO Jing-sun, OUYANG Cheng, CHEN Li-hua, MO Jia-qi. Approximate Solving Method of Shock for Nonlinear Disturbed Coupled Schrödinger System[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1477-1486. doi: 10.3879/j.issn.1000-0887.2012.12.009

Approximate Solving Method of Shock for Nonlinear Disturbed Coupled Schrödinger System

doi: 10.3879/j.issn.1000-0887.2012.12.009
  • Received Date: 2011-10-13
  • Rev Recd Date: 2012-04-23
  • Publish Date: 2012-12-15
  • A class of the nonlinear disturbed coupled Schrödinger system was studied. Using the specific technique to relate the exact and approximate solutions, firstly, the corresponding typical coupled system was considered. The exact shock travelling solution was obtained by using the mapping method. Then the travelling asymptotic solutions of the disturbed coupled Schrdinger system was found by using an approximate method.
  • loading
  • [1]
    Parkes E J, Duffy B R, Abbott P C. Some periodic and solitary travellingwave solutions of the short-pulse equation[J]. Chaos Solitons Fractals, 2008, 38(1): 154-159.
    [2]
    Sirendaoreji J S. Auxiliary equation method for solving nonlinear partial differential equations[J]. Phys Lett A, 2003, 309(5/6): 387-396.
    [3]
    McPhaden M J, Zhang D. Slowdown of the meridional overturning circulation in the upper Pacific ocean[J]. Nature, 2002, 415(3): 603-608.
    [4]
    潘留仙, 左伟明, 颜家壬. LandauGinzburgHiggs方程的微扰理论[J]. 物理学报, 2005, 54(1): 1-5.(PAN Liu-xian, ZUO Wei-ming, YAN Jia-ren. The theory of the perturbation for Landau-Ginzburg-Higgs equation[J]. Acta Phys Sin, 2005, 54(1): 1-5.(in Chinese)) 
    [5]
    封国林, 戴兴刚, 王爱慧, 丑纪范. 混沌系统中可预报性的研究[J]. 物理学报, 2001, 50(4): 606-611.(FENG Guo-lin, DAI Xing-gang, WANG Ai-hui, CHOU Ji-fan. On numerical predictability in the chaos system[J]. Acta Phys Sin, 2001, 50 (4): 606-611.(in Chinese)) 
    [6]
    Liao S J. Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. New York: CRC Press Co, 2004. 
    [7]
    He J H, Wu X H. Construction of solitary solution and compactonlike solution by variational iteration method[J]. Chaos, Solitions & Fractals, 2006, 29(1): 108-113. 
    [8]
    Ni W M, Wei J C. On positive solution concentrating on spheres for the GiererMeinhardt system[J]. J Differ Equations, 2006, 221(1): 158-189.
    [9]
    Bartier J P. Global behavior of solutions of a reactiondiffusion equation with gradient absorption in unbounded domains[J]. Asymptotic Anal, 2006, 46(3/4): 325-347. 
    [10]
    Libre J, da Silva P R, Teixeira M A. Regularization of discontinuous vector fields on R3 via singular perturbation[J]. J Dyn Differ Equations, 2007, 19(2): 309-331.
    [11]
    Guarguaglini F R, Natalini R. Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena[J]. Commun Partial Differ Equations, 2007, 32(2): 163-189.
    [12]
    MO Jia-qi. Singular perturbation for a class of nonlinear reaction diffusion systems[J]. Science in China, Ser A, 1989, 32(11): 1306-1315. 
    [13]
    MO Jia-qi. Homotopic mapping solving method for gain fluency of laser pulse amplifier[J]. Science in China, Ser G, 2009, 39(5): 568-661. 
    [14]
    莫嘉琪, 林一骅, 林万涛. 海-气振子厄尔尼诺-南方涛动模型的近似解[J]. 物理学报, 2010, 59(10):67076711.(MO Jia-qi, LIN Yi-hua, LIN Wan-tao. Approximate solution of seaair oscillator for El Ninosouthern oscillation model[J]. Acta Phys Sin, 2010, 59(10):6707-6711.(in Chinese)) 
    [15]
    MO Jia-qi, LIN Su-rong. The homotopic mapping solution for the solitary wave for a generalized nonlinear evolution equation[J]. Chin Phys B, 2009, 18(9): 3628-3631.
    [16]
    MO Jia-qi.Solution of travelling wave for nonlinear disturbed long-wave system[J]. Commun Theor Phys, 2011, 55(3): 387-390.
    [17]
    MO Jia-qi, CHEN Xian-feng. Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation[J]. Chin Phys B, 2010, 19(10): 100203.
    [18]
    李帮庆, 马玉兰, 徐美萍, 李阳. 耦合Schrödinger系统的周期振荡折叠孤子[J]. 物理学报, 2011, 60(6): 060203.(LI Bang-qing, MA Yu-lan, XU mei-ping, LI Yang. Folded soliton with periodic vibration for a nonlinear coupled Schrödinger system[J]. Acta Phys Sin, 2011, 60(6): 060203.(in Chinese)) 
    [19]
    Barbu L, Morosanu G. Singularly Perturbed Boundary Value Problems[M]. Basel: Birkhauserm Verlag A G, 2007.
    [20]
    de Jager E M, JIANG Furu. The Theory of Singular Perturbation[M]. Amsterdam: North Holland Publishing, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2088) PDF downloads(1152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return