SU Xiao-hong, ZHENG Lian-cun, ZHANG Xin-xin. On DTM-BF Method and Dual Solutions for an Unsteady MHD Flow Over a Permeable Shrinking Sheet With Velocity Slip[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1451-1464. doi: 10.3879/j.issn.1000-0887.2012.12.007
Citation: SU Xiao-hong, ZHENG Lian-cun, ZHANG Xin-xin. On DTM-BF Method and Dual Solutions for an Unsteady MHD Flow Over a Permeable Shrinking Sheet With Velocity Slip[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1451-1464. doi: 10.3879/j.issn.1000-0887.2012.12.007

On DTM-BF Method and Dual Solutions for an Unsteady MHD Flow Over a Permeable Shrinking Sheet With Velocity Slip

doi: 10.3879/j.issn.1000-0887.2012.12.007
  • Received Date: 2012-02-01
  • Rev Recd Date: 2012-05-06
  • Publish Date: 2012-12-15
  • The unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid was investigated analytically and numerically. The velocity slip at the solid surface was taken into account in the boundary conditions. A novel analytical method named DTMBF was proposed and applied to get the approximate analytical solutions of the nonlinear governing equation along with the boundary conditions at infinity. All analytical results were compared with the results obtained by a numerical method. The comparison showed an excellent agreement, which validated the accuracy of the DTMBF method. Moreover, the existence ranges of the dual solutions and unique solution for various parameters were obtained. The effects of velocity slip parameter, unsteadiness parameter, magnetic parameter, suction/injection parameter and velocity ratio parameter on the skin friction, the unique velocity and dual velocity profiles were explored respectively.
  • loading
  • [1]
    Crane L J. Flow past a stretching plate[J]. Zeitschrift für Angewandte Mathematik und Physik, 1970, 21(4): 645-647.
    [2]
    Grubka L J, Bobba K M. Heat transfer characteristics of a continuous stretching surface with variable temperature[J]. ASME Journal of Heat Transfer, 1985, 107(1): 248-250.
    [3]
    Elbashbeshy E M A. Heat transfer over a stretching surface with variable surface heat flux[J]. Journal of Physics D: Applied Physics, 1998, 31(16): 1951-1955.
    [4]
    Elbashbeshy E M A, Bazid M A A. Heat transfer over a continuously moving plate embedded in a nonDarcian porous medium[J]. International Journal of Heat and Mass Transfer, 2000, 43(17): 3087-3092.
    [5]
    Hayat T, Sajid M. Analytical solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet[J]. International Journal of Heat and Mass Transfer, 2007, 50(1/2): 75-84.
    [6]
    Sarma M S. Heat transfer in a viscoelastic fluid over a stretching sheet[J]. Journal of Mathematical Analysis and Applications, 1998, 222(1): 268-275.
    [7]
    Abel M S, Datti P S, Mahesha N. Flow and heat transfer in a powerlaw fluid over a stretching sheet with variable thermal conductivity and nonuniform heat source[J]. International Journal of Heat and Mass Transfer, 2009, 52(11/12): 2902-2913.
    [8]
    Dandapat B S, Singh S N, Singh R P. Heat transfer due to permeable stretching wall in presence of transverse magnetic field[J]. Archives of Mechanics, 2004, 56(2): 87-101.
    [9]
    Abel M S, Nandeppanavar M M. Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with nonuniform heat source/heat sink[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2120-2131.
    [10]
    Mahapatra T R, Nandy S K, Gupta A S. Magnetohydrodynamic stagnationpoint flow of a power law fluid towards a stretching surface[J]. International Journal of NonLinear Mechanics, 2009, 44(2): 124-129.
    [11]
    Prasad K V, Vajravelu K, Datti P S. The effects of variable fluid properties on the hydromagnetic flow and heat transfer over a non-linearly stretching sheet[J]. International Journal of Thermal Sciences, 2010, 49(3): 609-610.
    [12]
    Goldstein S. On backward boundary layers and flow in converging passages[J]. Journal of Fluid Mechanics, 1965, 21(1): 33-45.
    [13]
    Miklavcic M, Wang C Y. Viscous flow due to a shrinking sheet[J]. Quarterly of Applied Mathematics, 2006, 64(2): 283-290.
    [14]
    Sajid M, Hayat T. The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet[J]. Chaos, Solitons and Fractals, 2009, 39(3): 1317-1323.
    [15]
    Hayat T, Abbas Z, Sajid M. On the analytical solution of MHD flow of a second grade fluid over a shrinking sheet[J]. ASME Journal of Applied Mechanics, 2007, 74(6): 1165-1171.
    [16]
    Hayat T, Javed T, Sajid M. Analytical solution for MHD rotating flow of a second grade fluid over a shrinking surface[J]. Physics Letters A, 2008, 372(18): 3264-3273.
    [17]
    Fang T, Zhang J. Closedform exact solutions of MHD viscous flow over a shrinking sheet[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(7): 2853-2857.
    [18]
    Fang T, Liang W, Lee C F. A new solution branch for the Blasius equation—a shrinking sheet problem[J]. Computers & Mathematics With Applications, 2008, 56(12): 3088-3095.
    [19]
    Noor N F M, Kechil S A, Hashim I. Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(2): 144-148.
    [20]
    Gal-el-Hak M. The fluid mechanics of microdevices—the Freeman scholar lecture[J]. ASME Journal of Fluids Engineering, 1999, 121(5): 5-33.
    [21]
    Pande G C, Goudas C L. Hydromagnetic Reyleigh problem for a porous wall in slip flow regime[J]. Astrophysics and Space Science, 1996, 243(2): 285-289.
    [22]
    Yoshimura A, Prudhomme R K. Wall slip corrections for Couette and parallel disc viscometers[J]. Journal of Rheology, 1988, 32(1): 53-67.
    [23]
    Andersson H I. Slip flow past a stretching surface[J]. Acta Mechanica, 2002, 158(1/2): 121-125.
    [24]
    Wang C Y. Flow due to a stretching boundary with partial slip—an exact solution of the NavierStokes equations[J]. Chemical Engineering Science, 2002, 57(17): 3745-3747.
    [25]
    Fang T, Zhang J, Yao S. Slip MHD viscous flow over a stretching sheet—an exact solution[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(11): 3731-3737.
    [26]
    Wang C Y. Analysis of viscous flow due to a stretching sheet with surface slip and suction[J]. Nonlinear Analysis: Real World Applications, 2009, 10(1): 375-380.
    [27]
    Aziz A. Hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(3): 573-580.
    [28]
    Bhattacharyya K, Mukhopadhyay S, Layek G C. Slip effects on boundary layer stagnationpoint flow and heat transfer towards a shrinking sheet[J]. International Journal of Heat and Mass Transfer, 2011, 54(1/3): 308-313.
    [29]
    Wang C. Analytical solutions for a liquid film on an unsteady stretching surface[J]. Heat and Mass Transfer, 2006, 42(8): 759-766.
    [30]
    Ishak A, Nazar R, Pop I. Heat transfer over an unsteady stretching permeable surface with prescribed wall temperature[J]. Nonlinear Analysis: Real World Applications, 2009, 10(5): 2909-2913.
    [31]
    Mukhopadhyay S. Unsteady boundary layer flow and heat transfer past a porous stretching sheet in presence of variable viscosity and thermal diffusivity[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 5213-5217.
    [32]
    Mukhopadhyay S. Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 3261-3265.
    [33]
    Tsai R, Huang K H, Huang J S. Flow and heat transfer over an unsteady stretching surface with nonuniform heat source[J]. International Communications in Heat and Mass Transfer, 2008, 35(10): 1340-1343.
    [34]
    Hang X, Liao S J, Pop I. Series solutions of unsteady threedimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate[J]. European Journal of MechanicsB/Fluids, 2007, 26(1): 15-27.
    [35]
     
    [36]
    Ali M E, Magyari E. Unsteady fluid and heat flow induced by a submerged stretching surface while its steady motion is slowed down gradually[J]. International Journal of Heat and Mass Transfer, 2007, 50(1/2): 188-195.
    [37]
    Zheng L C, Wang L J, Zhang X X. Analytical solutions of unsteady boundary flow and heat transfer on a permeable stretching sheet with non-uniform heat source/sink[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(2): 731-740.
    [38]
    Pal D, Hiremath P S. Computational modeling of heat transfer over an unsteady stretching surface embedded in a porous medium[J]. Meccanica, 2010, 45(3): 415-424.
    [39]
    Andersson H I, Aarseth J B, Dandapat B S. Heat transfer in a liquid film on an unsteady stretching surface[J]. International Journal of Heat and Mass Transfer, 2000, 43(1): 69-74.
    [40]
    Wang C Y. Liquid film on an unsteady stretching sheet[J]. Quarterly of Applied Mathematics, 1990, 48(4): 601-610.
    [41]
    Merkin J H, Kumaran V. The unsteady MHD boundary-layer flow on a shrinking sheet[J]. European Journal of MechanicsB/Fluids, 2010, 29(5): 357-363.
    [42]
    Fan T, Xu H, Pop I. Unsteady stagnation flow and heat transfer towards a shrinking sheet[J]. International Communications in Heat and Mass Transfer, 2010, 37(10): 1440-1446.
    [43]
    Fang T G, Zhang J, Yao S S. Viscous flow over an unsteady shrinking sheet with mass transfer[J]. Chinese Physics Letters, 2009, 26(1): 0147031-0147034.
    [44]
    赵家奎. 微分变换及其在电路中的应用[M]. 武汉: 华中理工大学出版社, 1988. (ZHAO Jia-kui. Differential Transformation and Its Applications for Electrical Circuits[M]. Wuhan: Huazhong University Press, 1986.(in Chinese)) 
    [45]
    Ayaz F. Solutions of the systems of differential equations by differential transform method[J]. Applied Mathematics and Computation, 2004, 147(2): 547-567.
    [46]
    Chang S H, Chang I L. A new algorithm for calculating two-dimensional differential transform of nonlinear functions[J]. Applied Mathematics and Computation, 2009, 215(7): 2486-2494.
    [47]
    Abdel-Halim Hassan I H. Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems[J]. Chaos, Solitons and Fractals, 2008, 36(1): 53-65.
    [48]
    Boyd J. Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain[J]. Computers in Physics, 1997, 11(3): 299-303.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2315) PDF downloads(1416) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return