Citation: | Paras Ram, Vikas Kumar. Effect of Temperature Dependent Viscosity on the Revolving Axi-Symmetric Ferrofluid Flow With Heat Transfer[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1340-1351. doi: 10.3879/j.issn.1000-0887.2012.11.009 |
[1] |
Rosensweig R E. Ferrohydrodynamics[M]. Cambridge: Cambridge University Press, 1985.
|
[2] |
Schlichting H. Boundary Layer Theory[M]. New York: McGraw-Hill Book Company, 1960.
|
[3] |
Krmn V Th. ber laminare und turbulente reibung[J]. Zeitschrift für Angewandte Mathmatik und Mechanik, 1921, 1(4): 233-252.
|
[4] |
Cochran W G. The flow due to a rotating disk[C]Proceedings of the Cambridge Philosophical Society, 1934, 30: 365-375.
|
[5] |
Benton E R. On the flow due to a rotating disk[J]. Journal of Fluid Mechanics, 1966, 24(4):781800.
|
[6] |
Attia H A. Transient flow of a conducting fluid with heat transfer due to an infinite rotating disk[J]. International Communications in Heat and Mass Transfer, 2001, 28(3): 439-448.
|
[7] |
Kafoussias N G, Williams E W. The effect of temperature dependent viscosity on free-forced convective laminar boundary layer flow past a vertical isothermal at plate[J]. Acta Mechanica, 1995, 110(1/4): 123-137.
|
[8] |
Attia H A. Influence of temperature dependent viscosity on the MHD-channel flow of dusty fluid with heat transfer[J]. Acta Mechanica, 2001, 151(1): 89-101.
|
[9] |
Maleque K A, Sattar M A. Steady laminar convective flow with variable properties due to a porous rotating disk[J]. Transactions of ASME, 2005, 127(12): 1406-1409.
|
[10] |
Ramanathan A, Muchikel N. Effect of temperature-dependent viscosity on ferroconvection in a porous medium[J]. International Journal of Applied Mechanics and Engineering, 2006, 11(1): 93-104.
|
[11] |
Hooman K, Gurgenci H. Effects of temperature-dependent viscosity on Benard convection in a porous medium using a non-Darcy model[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1139-1149.
|
[12] |
Hooman K, Gurgenci H. Effects of temperature-dependent viscosity on forced convection inside a porous medium[J]. Transport in Porous Media, 2008, 75(2): 249-267.
|
[13] |
Frusteri F, Osalusi E. On MHD and slip flow over a rotating porous disk with variable properties[J]. International Communications in Heat and Mass Transfer, 2007, 34(4): 492-501.
|
[14] |
Ram P, Bhandari A, Sharma K. Effect of magnetic field-dependent viscosity on revolving ferrofluid[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(21): 3476-3480.
|
[15] |
Rani H P, Kim C N. A numerical study on unsteady natural convection of air with variable viscosity over an isothermal vertical layer[J]. Korean Journal of Chemical Engineering, 2010, 27(3): 759-765.
|
[16] |
Maleque K A. Effects of combined temperature- and depth-dependent viscosity and Hall current on an unsteady MHD laminar convective flow due to a rotating disk[J]. Chemical Engineering Communications, 2010, 197(4): 506-521.
|
[17] |
Anderson H I, Valnes O A. Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole[J]. Acta Mechanica, 1998, 128(1/2): 39-47.
|