Citation: | Nariman Ashrafi, Habib Karimi Haghighi. Improved Nonlinear Fluid Model in Rotating Flow[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1320-1329. doi: 10.3879/j.issn.1000-0887.2012.11.007 |
[1] |
Taylor G I. Stability of a viscous liquid contained between two rotating cylinders[J]. Philos Trans R Soc London, Ser A, 1923, 223: 289-343.
|
[2] |
Tagg R. The Couette-Taylor problem[J]. Nonlinear Science Today, 1994, 4: 2-25.
|
[3] |
Gyr A, Bewersdorff H -W. Drag reduction of turbulent flows by additives[C]Fluid Mechanics and Its Applications, Vol 32. New York: Kluwer Academic, 1995.
|
[4] |
Brenner M, Stone H. Modern classical physics through the work of G I Taylor[J]. Physics Today, 2000, 53(5): 30-35.
|
[5] |
Hoffmann C, Altmeyer S, Pinter A, Lücke M. Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals[J]. New J Physics, 2009, 11: 1-24. DOI 10.1088/1367-2630/11/5/053002.
|
[6] |
Kuhlmann H. Model for Taylor-Couette flow[J]. Phys Rev A, 1985, 32(3): 1703-1707.
|
[7] |
Berger H R. Mode analysis of Taylor-Couette flow in finite gaps[J]. Z Angew Math Mech, 1999, 79(2): 91-96. DOI 10.1002/(SICI)1521-4001(199902).
|
[8] |
Li Z, Khayat R. A non-linear dynamical system approach to finite amplitude Taylor-Vortex flow of shear-thinning fluids[J]. Int J Numer Meth Fluids, 2004, 45(3): 321-340. DOI 10.1002/fld.703.
|
[9] |
Ashrafi N. Stability analysis of shear-thinning flow between rotating cylinders[J]. Applied Mathematical Modelling, 2011, 35(9): 4407-4423. DOI 10.1016/j.apm.2011.03. 010.
|
[10] |
Khayat R. Low-dimensional approach to nonlinear overstability of purely elastic Taylor-vortex flow[J]. Physical Review Letters, 1997, 78(26): 4918-4921.
|
[11] |
Khayat R. Finite-amplitude Taylor-vortex flow of viscoelastic fluids[J]. Journal of Fluid Mechanics, 1999, 400: 33-58.
|
[12] |
Muller S J, Shaqfeh E S G, Larson R G. Experimental study of the onset of oscillatory instability in viscoelastic Taylor-Couette flow[J]. Journal of Non-Newtonian Fluid Mechanics, 1993, 46: 315-330.
|
[13] |
Larson R G. Instabilities in viscoelastic flows[J]. Rheol Acta, 1992, 31(3): 213-263.
|
[14] |
Larson R G, Shaqfeh E S G, Muller S J. A purely elastic instability in Taylor-Couette flow[J]. Journal of Fluid Mechanics, 1990, 218: 573-600.
|
[15] |
Dusting J, Balabani S. Mixing in a Taylor-Couette reactor in the non-wavy flow regime[J]. Chem Eng Sci, 2009, 64(13): 3103-3111.
|
[16] |
Yorke J A, Yorke E D. Hydrodynamic Instabilities and the Transition to Turbulence[M]. Swinney H L, Gollub J P. Berlin: Springer-Verlag, 1981.
|
[17] |
Yahata H. Temporal development of the Taylor vortices in a rotating field[J]. Prog Theor Phys, Supplement, 1978, 64: 176-185.
|
[18] |
Bird R B, Armstrong R C, Hassager O. Dynamics of Polymeric Liquids[M]. 2nd ed. Vol 1. New York: Wiley, 1987.
|
[19] |
Coronado-Matutti O, Souza Mendes P R, Carvalho M S. Instability of inelastic shear-thinning liquids in a Couette flow between concentric cylinders[J]. J Fluid Eng, 2004, 126(3): 385-390. DOI 10.1115/1.1760537.
|
[20] |
Crumeryrolle O, Mutabazi I, Grisel M. Experimental study of inertioelastic Couette-Taylor instability modes in dilute and semidilute polymer solutions[J]. Physics of Fluids, 2002, 14(5): 1681-1688. DOI 10.1063/1.1466837.
|
[21] |
Ashrafi N, Karimi Haghighi H. Effect of gap width on stability of non-Newtonian Taylor-Couette flow[J]. Z Angew Math Mech, 2012, 92(5): 393-408.
|
[22] |
Strogatz S H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering[M]. Rerseus Publishing, 1994.
|