LI Feng-ming, LIU Chun-chuan. Parametric Vibration Stability and Active Control of Nonlinear Beams[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1284-1293. doi: 10.3879/j.issn.1000-0887.2012.11.004
Citation: LI Feng-ming, LIU Chun-chuan. Parametric Vibration Stability and Active Control of Nonlinear Beams[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1284-1293. doi: 10.3879/j.issn.1000-0887.2012.11.004

Parametric Vibration Stability and Active Control of Nonlinear Beams

doi: 10.3879/j.issn.1000-0887.2012.11.004
  • Received Date: 2011-08-27
  • Rev Recd Date: 2012-06-17
  • Publish Date: 2012-11-15
  • The vibration stability and active control of the parametrically excited nonlinear beam structures were studied using the piezoelectric material. The velocity feedback control algorithm was applied to obtain the active damping. The cubic nonlinear equation of motion with damping was established by employing Hamilton’ principle. The method of multiple scales was used to solve the equation of motion, and the stable region was obtained. The effects of the control gain and amplitude of the external force on the stable region and amplitudefrequency curve characteristics were analyzed numerically. From the numerical results it was seen that with the increase of the feedback control gain, the axial force to which the structure could be subjected increased, and in certain scope the structural active damping ratio also increased. With the increase of the control gain, the response amplitude decreases gradually, but the required control voltage exists peak value.
  • loading
  • [1]
    Zhang W, Chen Y, Cao D X. Computation of normal forms for eight-dimensional nonlinear dynamical system and application to a viscoelastic moving belt[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2006, 7(1): 35-58.
    [2]
    张琪昌, 田瑞兰, 李小涛. 高维非线性动力系统最简规范形的计算[J]. 振动工程学报, 2008, 21(5): 436-440.(ZHANG Qi-chang, TIAN Rui-lan, LI Xiao-tao. General program of calculating the simplest normal forms for high-dimensional nonlinear dynamical systems[J]. Journal of Vibration Engineering, 2008, 21(5): 436-440. (in Chinese))
    [3]
    戎海武, 王向东, 孟光, 徐伟, 方同.窄带随机噪声作用下非线性系统的响应[J]. 应用数学和力学, 2003, 24(7):723-729.(RONG Hai-wu, WANG Xiang-dong, MENG Guang, XU Wei, FANG Tong. Response of nonlinear oscillator under narrow-band random excitation[J]. Applied Mathematics and Mechanics(English Edition), 2003, 24(7): 817-825.)
    [4]
    李凤明, 孙春春, 王毅泽, 黄文虎. 参数激励非线性压电梁的振动稳定性[J]. 振动工程学报, 2008, 21(5):441-445.(LI Feng-ming, SUN Chun-chun, WANG Yi-ze,HUANG Wen-hu. Vibration stability of the parametrically excited nonlinear piezoelectric beams[J]. Journal of Vibration Engineering, 2008, 21(5): 441-445. (in Chinese))
    [5]
    蔡国平. 存在时滞的柔性梁的振动主动控制[J]. 固体力学学报, 2004, 25(1): 29-34.(CAI Guo-ping. Active vibration control of a flexible beam with time delay in control[J]. Acta Mechanica Solida Sinica, 2004, 25(1): 29-34. (in Chinese))
    [6]
    Li F M, Kishimoto K, Wang Y S, Chen Z B, Huang W H. Vibration control of beams with active constrained layer damping[J]. Smart Materials and Structures, 2008, 17(6): 065036.
    [7]
    Song Z G, Li F M. Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs[J]. Smart Materials and Structures, 2011, 20(5): 055013.
    [8]
    Ray M C, Batra R C. Vertically reinforced 1-3 piezoelectric composites for active damping of functionally graded plates[J]. AIAA Journal, 2007, 45(7): 1779-1783.
    [9]
    Zhang H Y, Shen Y P. Vibration suppression of laminated plates with 1-3 piezoelectric fiber-reinforced composite layers equipped with interdigitated electrodes[J]. Composite Structures, 2007, 79(2): 220-228.
    [10]
    Dong X J, Meng G, Peng J C. Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and experimental study[J]. Journal of Sound and Vibration, 2006, 297(3/5): 680-693.
    [11]
    Zhang Y, Niu H, Xie S, Zhang X. Numerical and experimental investigation of active vibration control in a cylindrical shell partially covered by a laminated PVDF actuator[J]. Smart Materials and Structures, 2008, 17(3): 035024.
    [12]
    Qiu Z C, Han J D, Zhang X M, Wang Y C, Wu Z W. Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator[J]. Journal of Sound and Vibration, 2009, 326(3/5): 438-455.
    [13]
    Kapuria S, Yasin M Y. Active vibration suppression of multilayered plates integrated with piezoelectric fiber reinforced composites using an efficient finite element model[J]. Journal of Sound and Vibration, 2010, 329(16): 3247-3265.
    [14]
    Chen L W, Lin C Y, Wang C C. Dynamic stability analysis and control of a composite beam with piezoelectric layers[J]. Composite Structures, 2002, 56(1): 97-109.
    [15]
    Kumar K R, Narayanan S. Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs[J]. Smart Materials and Structures, 2008, 17(5): 055008.
    [16]
    Wang C Y, Vaicaitis R. Active control of vibrations and noise of double wall cylindrical shells[J]. Journal of Sound and Vibration, 1998, 216(5): 865-888.
    [17]
    陈予恕. 非线性振动[M]. 北京: 高等教育出版社,2002.(CHEN Yu-shu. Nonlinear Vibration[M]. Beijing: Higher Education Press, 2002. (in Chinese))
    [18]
    Ganesan R. Effects of bearing and shaft asymmetries on the instability of rotors operating at near-critical speeds[J]. Mechanism and Machine Theory, 2000, 35(5): 737-752.
    [19]
    刘延柱, 陈立群. 非线性振动[M]. 北京:高等教育出版社, 2001. (LIU Yan-zhu, CHEN Li-qun. Nonlinear Vibration[M]. Beijing: Higher Education Press, 2001.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2796) PDF downloads(1238) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return