Citation: | LI Wei-guo, CHENG Tian-bao, ZHANG Ru-bing, FANG Dai-ning. Properties and Appropriate Conditions of Stress Reduction Factor and Thermal Shock Resistance Parameters for Ceramics[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1257-1265. doi: 10.3879/j.issn.1000-0887.2012.11.001 |
[1] |
Cheng C M. Resistance to thermal shock[J]. Journal of the American Rocket Society, 1951, 21(6): 147-153.
|
[2] |
Kingery W D. Factors affecting thermal stress resistance of ceramic materials[J]. Journal of the American Ceramic Society, 1955, 38(1): 3-15.
|
[3] |
Hasselman D P H. Elastic energy at fracture and surface energy as design criteria for thermal shock[J]. Journal of the American Ceramic Society, 1963, 46(11): 535-540.
|
[4] |
Hasselman D P H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics[J]. Journal of the American Ceramic Society, 1969, 52(11): 600-604.
|
[5] |
Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics[M]. 2nd ed. New York: John Wiley and Sons, 1976.
|
[6] |
Lewis D. Comparison of critical ΔTc values in thermal shock with the R parameter[J]. Journal of the American Ceramic Society, 1980, 63(11/12): 713-714.
|
[7] |
Wang H, Singh R N. Thermal shock behaviour of ceramics and ceramic composites[J]. International Materials Reviews, 1994, 39(6): 228-244.
|
[8] |
Green D J.An Introduction to the Mechanical Properties of Ceramics[M]. Cambridge: Cambridge University Press, 1998.
|
[9] |
Fahrenholtz W G, Hilmas G E, Talmy I G, Zaykoski J A. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364.
|
[10] |
HOU Lei, ZHAO Jun-jie, LI Han-ling. Finite element convergence analysis of two-scale non-Newtonian flow problems[J].Advanced Materials Research, 2013,718/720: 1723-1728.
|
[11] |
戈西 M K, 卡诺瑞阿 M. 热冲击荷载作用下的含球形空腔的广义热弹性功能梯度球形各向同性体[J].应用数学和力学, 2008, 29(10):1147-1160. (Ghosh M K, Kanoria M. Generalized thermoelastic functionally graded spherically isotropic solid containing a spherical cavity under thermal shock[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(10): 1263-1278.)
|
[12] |
Meng S H, Liu G Q, Sun S L. Prediction of crack depth during quenching test for an ultra high temperature ceramic[J]. Materials and Design, 2010, 31(1): 556-559.
|
[13] |
Shao Y F, Xu X H, Meng S H, Bai G H, Jiang C P, Song F. Crack patterns in ceramic plates after quenching[J]. Journal of the American Ceramic Society, 2010, 93(10): 3006-3008.
|
[14] |
Liang J, Wang Y, Fang G D, Han J C. Research on thermal shock resistance of ZrB2-SiC-AlN ceramics using an indentation-quench method[J]. Journal of Alloys and Compounds, 2010, 493(1/2): 695-698.
|
[15] |
Han J C, Wang B L. Thermal shock resistance of ceramics with temperature-dependent material properties at elevated temperature[J]. Acta Materialia, 2011, 59(4): 1373-1382.
|
[16] |
Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M, Salem J A. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. Journal of the European Ceramic Society, 2002, 22(14/15): 2757-2767.
|
[17] |
Zhang X H, Xu L, Du S Y, Han W B, Han J C, Liu C Y. Thermal shock behavior of SiC-whisker-reinforced diboride ultrahigh-temperature ceramics[J]. Scripta Materialia, 2008, 59(1): 55-58.
|
[18] |
Liang J, Wang C, Wang Y, Jing L, Luan X. The influence of surface heat transfer conditions on thermal shock behavior of ZrB2-SiC-AlN ceramic composites[J]. Scripta Materialia, 2009, 61(6): 656-659.
|
[19] |
Zhang X H, Wang Z, Hu P, Han W B, Hong C Q. Mechanical properties and thermal shock resistance of ZrB2-SiC ceramic toughened with graphite flake and SiC whiskers[J]. Scripta Materialia, 2009, 61(8): 809-812.
|
[20] |
zdemir I, Brekelmans W A M, Geers M G D. Modeling thermal shock damage in refractory materials via direct numerical simulation (DNS)[J]. Journal of the European Ceramic Society, 2010, 30(7): 1585-1597.
|
[21] |
Li W G, Cheng T B, Li D Y, Fang D N. Numerical simulation for thermal shock resistance of ultra-high temperature ceramics considering the effects of initial stress field[J]. Advances in Materials Science and Engineering, 2011, 2011: Article ID 757543, 7 pages.
|
[22] |
Incropera F P, DeWitt D P, Bergman T L, Lavine A S.Fundamentals of Heat and Mass Transfer[M]. 6th ed. New York: John Wiley and Sons, 2007: 166-188.
|
[23] |
Timoshenko S, Goodier J N. Theory of Elasticity[M]. 2nd ed. New York: McGraw-Hill Book Co, 1951: 399-404.
|
[24] |
Song F, Liu Q N, Meng S H, Jiang C P. A universal Biot number determining the susceptibility of ceramics to quenching[J]. Europhysics Letters, 2009, 87(5): Article ID 54001, 3 pages.
|
[25] |
Manson S S. Behavior of materials under conditions of thermal stress[R]. NACA Technical Note 2933, Washington, DC, July 1953.
|
[26] |
Li W G, Fang D N. Effects of thermal environments on the thermal shock resistance of ultra-high temperature ceramics[J]. Modern Physics Letters B, 2008, 22(14): 1375-1380.
|
[27] |
Manson S S. Thermal stresses:Ⅰ[J]. Machine Design, 1958, 30: 114-120.
|
[28] |
Becher P F, Lewis III D, Garman K R, Gonzalez A C. Thermal-shock resistance of ceramics-size and geometry-effects in quench tests[J]. American Ceramic Society Bulletin, 1980, 59(5): 542-545.
|
[29] |
Noda N, Matsunaga Y, Tsuji T, Nyuko H. Thermal shock problems of elastic bodies with a crack[J]. Journal of Thermal Stresses, 1989, 12(3): 369-383.
|
[30] |
Collin M, Rowcliffe D. Analysis and prediction of thermal shock in brittle materials[J]. Acta Materialia, 2000, 48(8): 1655-1665.
|
[31] |
Kim Y, Lee W J, Case E D. The measurement of the surface heat transfer coefficient for ceramics quenched into a water bath[J]. Materials Science and Engineering A, 1991, 145(1): L7-L11.
|
[32] |
Opeka M M, Talmy I G, Wuchina E J, Zaykoski J A, Causey S J. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds[J]. Journal of the European Ceramic Society, 1999, 19(13/14): 2405-2414.
|
[33] |
Wuchina E, Opeka M, Causey S, Buesking K, Spain J, Cull A, Routbort J, Guitierrez-Mora F. Designing for ultra high-temperature applications: the mechanical and thermal properties of HfB2, HfCx, HfNx, and αHf(N)[J]. Journal of Materials Science, 2004, 39(19): 5939-5949.
|
[34] |
Loehman R, Corral E, Dumm H P, Kotula P, Tandon R. Ultra high temperature ceramics for hypersonic vehicle applications[R]. SAND 2006-2925, Albuquerque, NM, June 2006.
|
[1] | ZHANG Xinchun, WANG Junyu, WANG Yulin, HUANG Zixuan, WANG Kai, QIN Jiangyi. Impact Responses of Prismatic Lithium-Ion Battery Based on the Membrane Factor Method[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1203-1213. doi: 10.21656/1000-0887.430289 |
[2] | CHEN Chang-rong. A Method for Evaluating Material Forces and Crack Forces in Ceramic Laminates[J]. Applied Mathematics and Mechanics, 2016, 37(7): 748-755. doi: 10.21656/1000-0887.370088 |
[3] | XU Hua, XU De-feng, YANG Lü-feng. A Finite Element Method With Generalized DOFs for Stress Intensity Factors of Crack Groups[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1039-1049. doi: 10.21656/1000-0887.370050 |
[4] | CAI Yan-hong, CHEN Hao-ran, TANG Li-qiang, YAN Cheng, JIANG Wan. Dynamic Stress Intensity Factor Analysis of Adhesively Bonded Material Interface With Damage Under Shear Loading[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1376-1386. |
[5] | GAO Xin, WANG Han-gong, KANG Xing-wu. Dynamic Stress Intensity Factor and Dynamic Crack Propagation Characteristics of Anisotropic Material[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1017-1027. |
[6] | LIN Zheng-yan, CHENG Zong-mao. Hausdorff Dimension of the Set Generated by Exceptional Oscillations of a Class of N-Parameter Gaussian Processes[J]. Applied Mathematics and Mechanics, 2007, 28(2): 216-224. |
[7] | XU Chun-hui, QIN Tai-yan, NODA Nao-Aki. Numerical Solutions of Singular Integral Equations for Planar Rectangular Interfacial Crack in Three Dimensional Bimaterials[J]. Applied Mathematics and Mechanics, 2007, 28(6): 668-674. |
[8] | YAO Guo-wen, LIU Zhan-fang, HUANG Pei-yan. Progressive Fragment Modeling of the Failure Wave in Ceramics Under Planar Impact Loading[J]. Applied Mathematics and Mechanics, 2006, 27(2): 193-198. |
[9] | Zhao Yucheng, Yuan Shuqing, Xiao Zhonghui, Xu Qingyu. The Fractional Dimension Identification Method of Critical Bifurcated Parameters of Bearing-Rotor System[J]. Applied Mathematics and Mechanics, 2000, 21(2): 126-130. |
[10] | Lü Yunbing, Zhang Kaiyin, Xiao Jinsheng, Wen Dongsheng. Thermal Stresses Analysis of Ceramic/Metal Functionally Gradient Material Cylinder[J]. Applied Mathematics and Mechanics, 1999, 20(4): 393-397. |
[11] | Qian Ren-gen, Shouetsu Itou. DynamicStress Intensity Factors around Two Cracks near an Interface of Two Dissimilar EIastic Half-PIanes under In-plane Shear Impact Load[J]. Applied Mathematics and Mechanics, 1995, 16(1): 61-72. |
[12] | Chen Wei-jiang, Wang Kai, Tang Ren-ji. Stress Intensity Factors of the Eccentric and Edge Cracked Cylinders[J]. Applied Mathematics and Mechanics, 1993, 14(4): 289-294. |
[13] | Wang Cheng-duan. Study of the Stress Intensity Factor of Preformed V Shape Fracture Tip[J]. Applied Mathematics and Mechanics, 1992, 13(5): 469-477. |
[14] | Zhang Ning-sheng, Zhao Xue-ren, Hsueh Dah-wei. A Weighted Residual Method for Elastic-Plastic Analysis near a Crack Tip and the Calculation of the Plastic Stress Intensity Factors[J]. Applied Mathematics and Mechanics, 1991, 12(12): 1055-1066. |
[15] | Wang Yuan-han. Stress Intensity Factors of a Plate with Two Cracks Emanating from an Arbitrary Hole[J]. Applied Mathematics and Mechanics, 1990, 11(8): 677-686. |
[16] | Ning Jie, Chien Wei-zang. Finite Element Method Combined with Dynamic Photoelastic Analysis to Determine Dynamic Stress-Intensity Factors[J]. Applied Mathematics and Mechanics, 1989, 10(10): 865-870. |
[17] | Zheng Jia-dong, Zhang Ru-fen, Guo Ben-yu. The Fourier Pseudo-Spectral Method for the SRLW Equation[J]. Applied Mathematics and Mechanics, 1989, 10(9): 801-810. |
[18] | Chen Guang-zu. Determining the Stress Intensity Factor by Using the Principle of Minimum Potential Energy[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1121-1129. |
[19] | Stress Intensity Factor Considering the Material Plasticity Limited in Scope[J]. Applied Mathematics and Mechanics, 1985, 6(11): 1019-1026. |
[20] | Tan Fu-qi. A Numerical Method for the Evaluation of Fourier Integrals[J]. Applied Mathematics and Mechanics, 1981, 2(5): 581-584. |