T.Hayat, S.A.Shehzad, A.Alsaedi. Soret and Dufour Effects in the Magnetohydrodynamic(MHD) Flow of Casson Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1211-1221. doi: 10.3879/j.issn.1000-0887.2012.10.007
Citation: T.Hayat, S.A.Shehzad, A.Alsaedi. Soret and Dufour Effects in the Magnetohydrodynamic(MHD) Flow of Casson Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1211-1221. doi: 10.3879/j.issn.1000-0887.2012.10.007

Soret and Dufour Effects in the Magnetohydrodynamic(MHD) Flow of Casson Fluid

doi: 10.3879/j.issn.1000-0887.2012.10.007
  • Received Date: 2011-10-27
  • Rev Recd Date: 2012-04-06
  • Publish Date: 2012-10-15
  • The Soret and Dufour effects on the hydrodynamic flow of Casson fluid over a stretched surface were discussed.The relevant equations were first derived and then series solution was constructed by homotopic procedure. Results for velocity, temperature and concentration fields were displayed and discussed. Numerical values of skin friction coefficient, Nusselt and Sherwood numbers for different values of physical parameters were constructed and analyzed. Convergence of series solutions was examined.
  • loading
  • [1]
    Crane L J. Flow past a stretching plate[J]. Zeitschrift für Angewandte Mathematik und Physik, 1970, 21(4): 645-647.
    [2]
    Hassani M, Tabar M M, Nemati H, Domairry G, Noori F. An analytical solution for boundary layer flow of a nanofluid past a stretching sheet[J]. International Journal of Thermal Sciences, 2011, 50(11): 2256-2263.
    [3]
    Kazem S, Shaban M, Abbasbandy S. Improved analytical solutions to a stagnation-point flow past a porous stretching sheet with heat generation[J]. Journal of the Franklin Institute, 2011, 348(8): 2044-2058.
    [4]
    Hayat T, Javed T, Abbas Z. Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space[J]. International Journal of Heat and Mass Transfer, 2008, 51(17/18): 4528-4534.
    [5]
    Rahman G M A. Thermal-diffusion and MHD for Soret and Dufour’s effects on Hiemenz flow and mass transfer of fluid flow through porous medium onto a stretching surface[J]. Physica B: Condensed Matter, 2010, 405(11): 2560-2569.
    [6]
    Yao B, Chen J. Series solution to the Falkner-Skan equation with stretching boundary[J]. Applied Mathematics and Computation, 2009, 208(1): 156-164.
    [7]
    Fang T, Zhang J, Yao S. A new family of unsteady boundary layers over a stretching surface[J]. Applied Mathematics and Computation, 2010, 217(8): 3747-3755.
    [8]
    Yao S, Fang T, Zhang J. Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(2): 752-760.
    [9]
    Hayat T, Awais M, Qasim M, Hendi A A. Effects of mass transfer on the stagnation point flow of an upper-convected Maxwell (UCM) fluid[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16):3777-3782.
    [10]
    Hayat T, Qasim M, Abbas Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet[J]. Z Naturforsch, A, 2010, 65: 231-239.
    [11]
    Ahmad A, Asghar S. Flow of a second grade fluid over a sheet stretching with arbitrary velocities subject to a transverse magnetic field[J]. Applied Mathematics Letters, 2011, 24(11): 1905-1909.
    [12]
    Muhaimina, Kandasamy R, Hashim I. Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction[J]. Nuclear Engineering and Design, 2010, 240(5): 933-939.
    [13]
    Kandasamy R, Periasamy K, Prabhu K K S. Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects[J]. International Journal of Heat and Mass Transfer, 2005, 48(21/22): 4751-4761.
    [14]
    Mrill E W, Benis A M, Gilliland E R, Sherwood T K, Salzman E W. Pressure flow relations of human blood hollow fibers at low flow rates[J]. Journal of Applied Physiology, 1965, 20: 954-967.
    [15]
    McDonald D A. Blood Flows in Arteries[M]. 2nd ed. London: Arnold, 1974.
    [16]
    Vosughi H, Shivanian E, Abbasbandy S. A new analytical technique to solve Volterra’s integral equations[J]. Mathematical Methods in the Applied Sciences, 2011, 34(10): 1243-1253.
    [17]
    Liao S J. Beyond Perturbation: Introduction to Homotopy Analysis Method[M]. Boca Raton: Chapman and Hall, CRC Press, 2003.
    [18]
    Abbasbandy S, Shirzadi A. Homotopy analysis method for a nonlinear chemistry problem[J]. Studies in Nonlinear Sciences, 2010, 1(4): 127-132.
    [19]
    Ziabakhsh Z, Domairry G, Bararnia H, Babazadeh H. Analytical solution of flow and diffusion of chemically reactive species over a nonlinearly stretching sheet immersed in a porous medium[J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(1): 22-28.
    [20]
    Rashidi M M, Pour S A M, Abbasbandy S. Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(4): 1874-1889.
    [21]
    Hayat T, Shehzad S A, Qasim M, Obaidat S. Steady flow of Maxwell fluid with convective boundary conditions[J]. Z Naturforsch, A, 2011, 66: 417-422.
    [22]
    Hayat T, Shehzad S A, Qasim M, Obaidat S. Radiative flow of a Jeffrey fluid in a porous medium with power law heat flux and heat source[J]. Nuclear Engineering and Design, 2012, 243: 15-19.
    [23]
    Hayat T, Qasim M. Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis[J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4780-4788.
    [24]
    Yao B. Approximate analytical solution to the Falkner-Skan wedge flow with the permeable wall of uniform suction[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(8): 3320-3326.
    [25]
    Rashidi M M, Pour S A M. Analytic approximate solutions for unsteady boundary-layer flow and heat transfer due to a stretching sheet by homotopy analysis method[J]. Nonlinear Analysis: Modelling and Control, 2010, 15(1): 83-95.
    [26]
    Liao S J. An optimal homotopy-analysis approach for strongly nolinear differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(8): 2003-2016.
    [27]
    Vyas P. Radiative MHD flow over a non-isothermal stretching sheet in a porous medium[J]. Applied Mathematical Sciences, 2010, 4(50): 2475-2484.
    [28]
    Turkyilmazoglu M. Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet[J]. International Journal of Thermal Sciences, 2011, 50(11): 2264-2276.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2168) PDF downloads(930) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return