S.Tariverdilo, J.Mirzapour, M.Shahmardani, Gh.Rezazadeh. Free Vibration of Membrane/Bounded Incompressible Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1091-1101. doi: 10.3879/j.issn.1000-0887.2012.09.006
Citation: S.Tariverdilo, J.Mirzapour, M.Shahmardani, Gh.Rezazadeh. Free Vibration of Membrane/Bounded Incompressible Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1091-1101. doi: 10.3879/j.issn.1000-0887.2012.09.006

Free Vibration of Membrane/Bounded Incompressible Fluid

doi: 10.3879/j.issn.1000-0887.2012.09.006
  • Received Date: 2011-07-26
  • Rev Recd Date: 2012-02-13
  • Publish Date: 2012-09-15
  • Vibration of circular membrane in contact with fluid had extensive applications in the industry. The natural vibration frequencies for asymmetric free vibration of circular membrane in contact with incompressible bounded fluid were derived. Considering small oscillations induced by the membrane vibration in incompressible and inviscid fluid, velocity potential function was used to describe the fluid field. Two approaches were used to derive the free vibration frequencies of the system. These included a variational formulation and an approximate solution employing the Rayleigh quotient method. Good correlation was found between free vibration frequencies evaluated using the two methods. Finally, the effects of the fluid depth and mass density, and radial tension on the free vibration frequencies of the coupled system were investigated.
  • loading
  • [1]
    Jenkinsa C H M, Kordeb U A. Membrane vibration experiments: a historical review and recent results[J]. Journal of Sound and Vibration, 2006, 295(3): 602-613.
    [2]
    Chiba M, Watanabe H, Bauer H F. Hydroelastic coupled vibrations in a cylindrical container with a membrane bottom, containing liquid with surface tension[J]. Journal of Sound and Vibration, 2002, 251(4): 717-740.
    [3]
    Pan L S, Ng T Y, Liu G R, Lam K Y, Jiang T Y. Analytical solutions for the dynamic analysis of a valveless micropump—a fluid-membrane coupling study[J]. Journal of Sensors and Actuators A: Physical, 2001, 93(2): 173-181.
    [4]
    Hsieh J -C, Plaut R H, Yucel O. Vibrations of an inextensible cylindrical membrane inflated with liquid[J]. Journal of Fluids and Structures, 1989, 3(2): 151-163.
    [5]
    Gutierrez R H, Laura P A A, Bambill D V, Jederlinic V A, Hodges D H. Axisymmetric vibrations of solid circular and annular membranes with continuously varying density[J]. Journal of Sound and Vibration, 1998, 212(4): 611-622.
    [6]
    Crighton D G. The Green function of an infinite, fluid loaded membrane[J]. Journal of Sound and Vibration, 1983, 86(3): 411-433.
    [7]
    Molki M, Breuer K. Oscillatory motions of a prestrained compliant membrane caused by fluid-membrane interaction[J]. Journal of Fluids and Structures, 2010, 26(3), 339-358.
    [8]
    Ghavanloo E, Daneshmand F. Analytical analysis of the static interaction of fluid and cylindrical membrane structures[J]. European Journal of Mechanics A/Solids, 2010, 29(4): 600-610.
    [9]
    Meirovitch L. Principles and Techniques of Vibrations[M]. Prentice-Hall International, 1997: 439-443.
    [10]
    Isshiki H, Nagata S. Variational principles related to motions of an elastic plate floating on a water surface[C]Proceedings of the Eleventh International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001, 1: 190-197.
    [11]
    Kwak M K, Amabili M. Hydroelastic vibration of free-edge annular plates[J]. ASME, Journal of Vibration and Acoustics, 1999, 121(1): 26-32.
    [12]
    Espinosa F M, Gallego-Juarez A G. On the resonance frequencies of water-loaded circular plates[J]. Journal of Sound and Vibration, 1984, 94(2): 217-222.
    [13]
    Nagia K, Takeuchi J. Vibration of a plate with arbitrary shape in contact with a fluid[J]. Journal of the Acoustical Society of America, 1984, 75(3): 1511-1518.
    [14]
    Amabili M, Kwak M K. Free vibration of circular plates coupled with liquids: revising the Lamb problem[J]. Journal of Fluids and Structures, 1996, 10(7): 743-761.
    [15]
    Amabili M. Eigenvalue problems for vibrating structures coupled with quiescent fluids with free surface[J]. Journal of Sound and Vibration, 2000, 231(1): 79-97.
    [16]
    Amabili M. Ritz method and substructuring in the study of vibration with strong fluid-structure interaction[J]. Journal of Fluid and Structures, 1997, 11(5): 507-523.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1790) PDF downloads(802) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return