YOU Shu-jun, GUO Bo-ling, NING Xiao-qi. Equations of Langmuir Turbulence and Zakharov Equations: Smoothness and Approximation[J]. Applied Mathematics and Mechanics, 2012, 33(8): 1013-1024. doi: 10.3879/j.issn.1000-0887.2012.08.009
Citation: YOU Shu-jun, GUO Bo-ling, NING Xiao-qi. Equations of Langmuir Turbulence and Zakharov Equations: Smoothness and Approximation[J]. Applied Mathematics and Mechanics, 2012, 33(8): 1013-1024. doi: 10.3879/j.issn.1000-0887.2012.08.009

Equations of Langmuir Turbulence and Zakharov Equations: Smoothness and Approximation

doi: 10.3879/j.issn.1000-0887.2012.08.009
  • Received Date: 2011-06-24
  • Rev Recd Date: 2012-03-30
  • Publish Date: 2012-08-15
  • The authors considered a family of systems parameterized by H,which described Langmuir’s turbulence, and studied the asymptotic behavior of the solutions (EH , nH ) when H went to zero. They state convergence results of (EH , nH )  to the couple (E,n) which is the solution of the Zakharov equations.
  • loading
  • [1]
    Zakharov V E. Collapse of Langmuir waves[J]. Sov Phys JETP, 1972, 35: 908-914.
    [2]
    Pecher H. An improved local well-posedness result for the one-dimensional Zakharov system[J]. J Math Anal Appl, 2008, 342(2): 1440-1454.
    [3]
    Guo B, Zhang J, Pu X. On the existence and uniqueness of smooth solution for a generalized Zakharov equation[J]. J Math Anal Appl, 2010, 365(1): 238-253.
    [4]
    Linares F, Matheus C. Well posedness for the 1D Zakharov-Rubenchik system[J]. Advances in Differential Equations, 2009, 14(3/4): 261-288.
    [5]
    Masmoudi N, Nakanishi K. Energy convergence for singular limits of Zakharov type systems[J]. Invent Math, 2008, 172(3): 535-583.
    [6]
    Garcia L G, Haas F, de Oliveira L P L, Goedert J. Modified Zakharov equations for plasmas with a quantum correction[J]. Phys Plasmas, 2005, 12(1): 1-8.
    [7]
    Lions J L. Quelques Mèthodes de Résolution des Problèmes aux Limites Non Linéaires[M]. Paris: Dunod Gauthier Villard, 1969:12, 53.
    [8]
    Added H, Added S. Existence globale d’une solution reguliére des equations de la turbulence de Langmuir en dimension 2[J]. C R A S, Paris, 1984, 299(12): 551-554.
    [9]
    Added H S. Equations of Langmuir turbulence and nonlinear Schrdinger equation: smoothness and approximation[J]. J Functional Analysis, 1988, 79(1): 183-210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2045) PDF downloads(897) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return