S.S.Motsa, T.Hayat, O.M.Aldossary. MHD Flow of UCM Fluid Above Porous Stretching Sheet Using the Successive Taylor Series Linearisation Method[J]. Applied Mathematics and Mechanics, 2012, 33(8): 919-932. doi: 10.3879/j.issn.1000-0887.2012.08.002
Citation: S.S.Motsa, T.Hayat, O.M.Aldossary. MHD Flow of UCM Fluid Above Porous Stretching Sheet Using the Successive Taylor Series Linearisation Method[J]. Applied Mathematics and Mechanics, 2012, 33(8): 919-932. doi: 10.3879/j.issn.1000-0887.2012.08.002

MHD Flow of UCM Fluid Above Porous Stretching Sheet Using the Successive Taylor Series Linearisation Method

doi: 10.3879/j.issn.1000-0887.2012.08.002
  • Received Date: 2011-06-10
  • Rev Recd Date: 2012-03-20
  • Publish Date: 2012-08-15
  • The magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected Maxwell (UCM) fluid over a porous stretching surface was investigated. Similarity transformations were used to reduce the governing partial differential equations into a nonlinear ordinary differential equation. The nonlinear problem was solved by employing successive Taylor series linearization method (STLM). Computations for velocity components were carried out for the emerging parameters. Numerical values of skin friction coefficient were presented and analyzed for various parameters of interest entering into the problem.
  • loading
  • [1]
    Lazurkin J S. Cold-drawing of glass-like and crystalline polymers[J]. Journal of Polymer Science, 1958, 30(121): 595-604.
    [2]
    Ginzburg B M. On the “cold drawing” of semicrystalline polymers[J]. Journal of Macromolecular Science, Part B, 2005, 44(2): 217-223.
    [3]
    Casas F, Alba-Simionesco C, Lequeux F, Montes H. Cold drawing of ploymers: plasticity and aging[J]. Journal of Non-Crystal Solids, 2006, 352(42/49): 5076-5080.
    [4]
    Crane L J. Flow past a stretching plate[J]. Zeitschrift für Angewandte Mathematik und Physik(ZAMP), 1970, 21(4): 645-647.
    [5]
    Wang C Y. Fluid flow due to stretching cylinder[J]. Physics of Fluids, 1988, 31(3): 466-468.
    [6]
    Wang C Y. Stretching a surface in a rotating fluid[J]. Zeitschrift für Angewandte Mathematik und Physik(ZAMP), 1988, 39(2): 177-185.
    [7]
    Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Canadian Journal of Chemical Engineering, 1977, 55(6): 744-746.
    [8]
    Dandapat B S, Kitamura A, Santra B. Transient film profile of thin liquid film flow on a stretching surface[J]. Zeitschrift für Angewandte Mathematik und Physik(ZAMP), 2006, 57(4): 623-635.
    [9]
    Santra B, Dandapat B S. Thin film flow over nonlinear stretching sheet[J]. Zeitschrift für Angewandte Mathematik und Physik(ZAMP), 2009, 60(4): 688-700.
    [10]
    Chiam T C. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet[J]. Acta Mechanica, 1998, 129(1/2): 63-72.
    [11]
    Liao S J. A new branch of solutions of boundary layer flows over an impermeable stretched plate[J]. International Journal of Heat and Mass Transfer, 2006, 48(12): 2529-2539.
    [12]
    Mukhopadhyay S. Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 3261-3265.
    [13]
    Parsad K V, Pal D, Datti P S. MHD power-law fluid flow and heat transfer over a non-isothermal stretching sheet[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2178-2189.
    [14]
    Fang T, Zhong Y. Viscous flow over a stretching sheet with an arbitrary surface velocity[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15: 3768-3776.
    [15]
    Ishak A, Nazar R, Pop I. Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet[J]. Meccanica, 2008, 43(4): 411-418.
    [16]
    Ishak A. Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect[J]. Meccanica, 2010, 45(3): 367-373.
    [17]
    Abel M S, Siddheshwar P G, Mahesha N. Numerical solution of the momentum and heat transfer equations for a hydromagnetic flow due to a stretching sheet of a non-uniform property micropolar liquid[J]. Applied Mathematics and Computation, 2011, 217(12): 5895-5909.
    [18]
    Pahlavan A A, Aliakbar V. Farahani F V, Sadeghy K. MHD flow of UCM fluids above stretching sheet using two-auxiliary-parameter homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2): 473-488.
    [19]
    Pahlavan A A, Aliakbar V, Sadeghy K. The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheet[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(3): 779-794.
    [20]
    Hayat T, Abbas Z, Sajid M. MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface[J]. Chaos Solitons and Fractals, 2009, 39(2): 840-848.
    [21]
    Alizadeh-Pahlavan A, Aliakbar V, Vakili-Farahani F, Sadeghy K. MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulations, 2009, 14(2): 473-488.
    [22]
    Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods in Fluid Dynamics[M]. Berlin: Springer-Verlag, 1988.
    [23]
    Makukula Z G, Sibanda P, Motsa S S. A novel numerical technique for two-dimensional laminar flow between two moving porous walls[J]. Mathematical Problems in Engineering, 2010, 2010. Article ID 528956, 15 pages; doi: 10.1155/2010/528956.
    [24]
    Makukula Z G, Sibanda P, Motsa S S. A note on the solution of the von Karman equations using series and Chebyshev spectral methods[J]. Boundary Value Problems, 2010, 2010. Article ID 471793, 17 pages; doi: 10.1155/2010/471793.
    [25]
    Makukula Z G, Sibanda P, Motsa S S. On new solutions for heat transfer in a visco-elastic fluid between parallel plates[J]. International Journal of Mathematical Models and Methods in Applied Sciences, 2010, 4(4): 221-230.
    [26]
    Makukula Z, Motsa S S, Sibanda P. On a new solution for the viscoelastic squeezing flow between two parallel plates[J]. Journal of Advanced Research in Applied Mathematics, 2010, 2(4): 31-38.
    [27]
    Motsa S S, Shateyi S. A new approach for the solution of three-dimensional magnetohydrodynamic rotating flow over a shrinking sheet[J]. Mathematical Problems in Engineering, 2010, 2010. Article ID 586340, 15 pages; doi: 10.1155/2010/586340.
    [28]
    Shateyi S, Motsa S S. Variable viscosity on magnetohydrodynamic fluid flow and heat transfer over an unsteady stretching surface with Hall effect[J]. Boundary Value Problems, 2010, 2010. Article ID 257568, 20 pages; doi: 10.1155/2010/257568.
    [29]
    Trefethen L N. Spectral Methods in MATLAB[M]. Philadelphia: SIAM, 2000: 51-75.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2165) PDF downloads(815) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return