SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, SI Xin-yi. Flow of a Micropolar Fluid Between Two Orthogonally Moving Porous Disks[J]. Applied Mathematics and Mechanics, 2012, 33(8): 907-918. doi: 10.3879/j.issn.1000-0887.2012.08.001
Citation: SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, SI Xin-yi. Flow of a Micropolar Fluid Between Two Orthogonally Moving Porous Disks[J]. Applied Mathematics and Mechanics, 2012, 33(8): 907-918. doi: 10.3879/j.issn.1000-0887.2012.08.001

Flow of a Micropolar Fluid Between Two Orthogonally Moving Porous Disks

doi: 10.3879/j.issn.1000-0887.2012.08.001
  • Received Date: 2011-11-21
  • Rev Recd Date: 2012-03-26
  • Publish Date: 2012-08-15
  • The unsteady, laminar, incompressible and two dimensional flow of a micropolar fluid between two orthogonally moving porous coaxial disks was considered. An extension of von Karman’s similarity transformations was applied to reduce the governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. The analytical solutions were obtained by employing the homotopy analysis method. The effects of various physical parameters like the expansion ratio, the permeability Reynolds number on the velocity fields were discussed in detail.
  • loading
  • [1]
    O’Connor J J, Boyd J, Avallone E A. Standard Handbook of Lubrication Engineering[M]. New York: McGraw-Hill,1968.
    [2]
    Elcrat A R. On the radial flow of a viscous fluid between porous disks[J]. Archive for Rational Mechanica and Analysis, 1976, 61(1): 91-96.
    [3]
    Rasmussen H. Steady viscous flow between two porous disks[J]. Zeitschrif für Angewandte Mathematik und Physik, 1970, 21(2): 187-195.
    [4]
    Berman A S. Laminar flow in channels with porous walls[J]. Journal of Applied Physics, 1953, 24(9): 1232-1235.
    [5]
    Eringen A C. Theory of thermomicrofluids[J]. Journal of Mathematical Analysis and Applications, 1972, 38(2): 480-496.
    [6]
    Aero E L, Bulygin A N, Kuvshinskii E V. Asymmetric hydromechanics[J]. Journal of Applied Mathematics and Mechanics, 1965, 29(2): 297-308.(in Russian)
    [7]
    Kamal M A, Ashraf M, Syed K S. Numerical solution of steady viscous flow of a micropolar fluid driven by injection between two porous disks[J].Applied Mathematics and Computation, 2006, 179(1): 1-10.
    [8]
    Ashraf M, Kamal M A, Syed K S. Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk[J]. Applied Mathematical Modelling, 2009, 33(4): 1933-1943.
    [9]
    Ariman T, Turk M A, Sylvester N D. Microcontinuum fluid mechanics-a review[J]. International Journal of Engineering Science, 1973, 11(8): 905-930.
    [10]
    Ariman T, Turk M A, Sylvester N D. Application of Microcontinuum fluid mechanics-a review[J]. International Journal of Engineering Science, 1974, 12(4): 273-293.
    [11]
    Eringen A C. Microcontinuum Field Theories-Ⅱ:Fluent Media[M]. New York: Springer, 2001.
    [12]
    Guram G S, Anwar M. Steady flow of a micropolar fluid due to a rotating disk[J]. Journal of Engineering Mathematics, 1979, 13(3): 223-234.
    [13]
    Guram G S, Anwar M. Micropolar flow due to a rotating disc with suction and injection[J]. ZAMM, 1981, 61(11): 589-605.
    [14]
    Nazir A, Mahmood T.Analysis of flow and heat transfer of viscous fluid between contracting rotating disks[J]. Applied Mathematical Modelling, 2011, 35(7): 3154-3165.
    [15]
    Uchida S, Aoki H. Unsteady flows in a semi-infinite contracting or expanding pipe[J]. Journal of Fluid Mechanics, 1977, 82(2): 371-387.
    [16]
    Ohki M. Unsteady flows in a porous, elastic, circular tube-1 the wall contracting or expanding in an axial direction[J].Bulletin of the JSME, 1980, 23(179): 679-686.
    [17]
    Barron J, Majdalani J, van Moorhem W K. A novel investigation of the oscillatory field over a transpiring surface[J]. Journal of Sound and Vibration, 2000, 235(2): 281-297.
    [18]
    Majdalani J, Zhou C, Dawson C A. Two-dimensional viscous flows between slowly expanding or contracting walls with weak permeability[J]. Journal of Biomechanics, 2002, 35(10): 1399-1403.
    [19]
    Majdalani J, Zhou C. Moderate-to-large injection and suction driven channel flows with expanding or contracting walls[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 2003, 83(3): 181-196.
    [20]
    Dauenhauer C E, Majdalani J. Exact self-similarity solution of the Navier-stokes equations for a porous channel with orthogonally moving walls[J]. Physics of Fluids, 2003, 15(6): 1485-1495.
    [21]
    Asghar S, Mushtaq M, Hayat T. Flow in a slowly deforming channel with weak permeability: an analytical approach[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 555-561.
    [22]
    Dinarvand S, Rashidi M M. A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls[J]. Nonlinear Analysis: Real World Applications, 2010, 11(3): 1502-1512.
    [23]
    Si X H, Zheng L C, Zhang X X, Chao Y. The flow of a micropolar fluid through a porous channel with expanding or contracting walls[J]. Center Europe Journal of Physics, 2011, 9(3): 825-834.
    [24]
    Si X H, Zheng L C, Zhang X X, Si X Y, Yang J H. Flow of a viscoelastic through a porous channel with expanding or contracting walls[J]. Chinese Physics Letters, 2011, 28(4): 044702.
    [25]
    Xu H, Lin Z L, Liao S J, Wu J Z, Majdalani J. Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonlly moving walls[J].Physics of Fluids, 2010, 22(5): 053601.
    [26]
    Liao S J. Beyond Perturbation:Introduction to Homotopy Analysis Method[M]. Boca, Raton: Chapman Hall/CRC Press, 2003.
    [27]
    Liao S J. On the homotopy analysis method for nonlinear problems[J]. Applied Mathematics and Computation, 2004, 147(2): 499-513.
    [28]
    Hayat T, Khan M. Homotopy solution for a generalized second grade fluid past a porous plate[J]. Non-Linear Dynamics, 2005, 42(2): 395-405.
    [29]
    Hayat T, Khan M, Asghar S. Magnetohydrodynamic flow of an oldroyd 6-constant fluid[J]. Applied Mathematics and Computation, 2004, 155(2): 417-425.
    [30]
    Abbas Z, Sajid M, Hayat T. MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(2): 229-238.
    [31]
    Sajid M, Hayat T, Asghar S. On the analytic solution of the steady flow of a fourth grade fluid[J]. Physics Letters A, 2006, 355(1): 18-26.
    [32]
    Abbasbandy S, Shivanian E, Vajravelu K. Mathematical properties of h-curve in the frame work of the homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(11): 4268-4275.
    [33]
    Abbasbandy S. Approximate analytical solutions to thermo-poroelastic equations by means of the iterated homotopy analysis method[J]. International Journal of Computer Mathematics, 2011, 88(8): 1763-1775.
    [34]
    Abbasbandy S, Magyari E, Shivanian E. The homotopy analysis method for multiple solutions of nonlinear boundary value problems[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(9/10): 3530-3536.
    [35]
    Rees D A S, Pop I. Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate[J]. Journal of Applied Mathematics, 1988, 61(2): 179-197.
    [36]
    Guram G S, Smith A C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Computers & Mathematics With Applications, 1980, 6(2): 213-233.
    [37]
    von Krmn T. be Laminare und turbulente Reibung[J]. Zeitschrif für Angewandte Mathematik und Mechanik, 1921, 1: 233-252.
    [38]
    Liao S J. An optimal homotopy-analysis approach for strongly nonlinear differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(8): 2003-2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2005) PDF downloads(813) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return