Citation: | SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, SI Xin-yi. Flow of a Micropolar Fluid Between Two Orthogonally Moving Porous Disks[J]. Applied Mathematics and Mechanics, 2012, 33(8): 907-918. doi: 10.3879/j.issn.1000-0887.2012.08.001 |
[1] |
O’Connor J J, Boyd J, Avallone E A. Standard Handbook of Lubrication Engineering[M]. New York: McGraw-Hill,1968.
|
[2] |
Elcrat A R. On the radial flow of a viscous fluid between porous disks[J]. Archive for Rational Mechanica and Analysis, 1976, 61(1): 91-96.
|
[3] |
Rasmussen H. Steady viscous flow between two porous disks[J]. Zeitschrif für Angewandte Mathematik und Physik, 1970, 21(2): 187-195.
|
[4] |
Berman A S. Laminar flow in channels with porous walls[J]. Journal of Applied Physics, 1953, 24(9): 1232-1235.
|
[5] |
Eringen A C. Theory of thermomicrofluids[J]. Journal of Mathematical Analysis and Applications, 1972, 38(2): 480-496.
|
[6] |
Aero E L, Bulygin A N, Kuvshinskii E V. Asymmetric hydromechanics[J]. Journal of Applied Mathematics and Mechanics, 1965, 29(2): 297-308.(in Russian)
|
[7] |
Kamal M A, Ashraf M, Syed K S. Numerical solution of steady viscous flow of a micropolar fluid driven by injection between two porous disks[J].Applied Mathematics and Computation, 2006, 179(1): 1-10.
|
[8] |
Ashraf M, Kamal M A, Syed K S. Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk[J]. Applied Mathematical Modelling, 2009, 33(4): 1933-1943.
|
[9] |
Ariman T, Turk M A, Sylvester N D. Microcontinuum fluid mechanics-a review[J]. International Journal of Engineering Science, 1973, 11(8): 905-930.
|
[10] |
Ariman T, Turk M A, Sylvester N D. Application of Microcontinuum fluid mechanics-a review[J]. International Journal of Engineering Science, 1974, 12(4): 273-293.
|
[11] |
Eringen A C. Microcontinuum Field Theories-Ⅱ:Fluent Media[M]. New York: Springer, 2001.
|
[12] |
Guram G S, Anwar M. Steady flow of a micropolar fluid due to a rotating disk[J]. Journal of Engineering Mathematics, 1979, 13(3): 223-234.
|
[13] |
Guram G S, Anwar M. Micropolar flow due to a rotating disc with suction and injection[J]. ZAMM, 1981, 61(11): 589-605.
|
[14] |
Nazir A, Mahmood T.Analysis of flow and heat transfer of viscous fluid between contracting rotating disks[J]. Applied Mathematical Modelling, 2011, 35(7): 3154-3165.
|
[15] |
Uchida S, Aoki H. Unsteady flows in a semi-infinite contracting or expanding pipe[J]. Journal of Fluid Mechanics, 1977, 82(2): 371-387.
|
[16] |
Ohki M. Unsteady flows in a porous, elastic, circular tube-1 the wall contracting or expanding in an axial direction[J].Bulletin of the JSME, 1980, 23(179): 679-686.
|
[17] |
Barron J, Majdalani J, van Moorhem W K. A novel investigation of the oscillatory field over a transpiring surface[J]. Journal of Sound and Vibration, 2000, 235(2): 281-297.
|
[18] |
Majdalani J, Zhou C, Dawson C A. Two-dimensional viscous flows between slowly expanding or contracting walls with weak permeability[J]. Journal of Biomechanics, 2002, 35(10): 1399-1403.
|
[19] |
Majdalani J, Zhou C. Moderate-to-large injection and suction driven channel flows with expanding or contracting walls[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 2003, 83(3): 181-196.
|
[20] |
Dauenhauer C E, Majdalani J. Exact self-similarity solution of the Navier-stokes equations for a porous channel with orthogonally moving walls[J]. Physics of Fluids, 2003, 15(6): 1485-1495.
|
[21] |
Asghar S, Mushtaq M, Hayat T. Flow in a slowly deforming channel with weak permeability: an analytical approach[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 555-561.
|
[22] |
Dinarvand S, Rashidi M M. A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls[J]. Nonlinear Analysis: Real World Applications, 2010, 11(3): 1502-1512.
|
[23] |
Si X H, Zheng L C, Zhang X X, Chao Y. The flow of a micropolar fluid through a porous channel with expanding or contracting walls[J]. Center Europe Journal of Physics, 2011, 9(3): 825-834.
|
[24] |
Si X H, Zheng L C, Zhang X X, Si X Y, Yang J H. Flow of a viscoelastic through a porous channel with expanding or contracting walls[J]. Chinese Physics Letters, 2011, 28(4): 044702.
|
[25] |
Xu H, Lin Z L, Liao S J, Wu J Z, Majdalani J. Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonlly moving walls[J].Physics of Fluids, 2010, 22(5): 053601.
|
[26] |
Liao S J. Beyond Perturbation:Introduction to Homotopy Analysis Method[M]. Boca, Raton: Chapman Hall/CRC Press, 2003.
|
[27] |
Liao S J. On the homotopy analysis method for nonlinear problems[J]. Applied Mathematics and Computation, 2004, 147(2): 499-513.
|
[28] |
Hayat T, Khan M. Homotopy solution for a generalized second grade fluid past a porous plate[J]. Non-Linear Dynamics, 2005, 42(2): 395-405.
|
[29] |
Hayat T, Khan M, Asghar S. Magnetohydrodynamic flow of an oldroyd 6-constant fluid[J]. Applied Mathematics and Computation, 2004, 155(2): 417-425.
|
[30] |
Abbas Z, Sajid M, Hayat T. MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(2): 229-238.
|
[31] |
Sajid M, Hayat T, Asghar S. On the analytic solution of the steady flow of a fourth grade fluid[J]. Physics Letters A, 2006, 355(1): 18-26.
|
[32] |
Abbasbandy S, Shivanian E, Vajravelu K. Mathematical properties of h-curve in the frame work of the homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(11): 4268-4275.
|
[33] |
Abbasbandy S. Approximate analytical solutions to thermo-poroelastic equations by means of the iterated homotopy analysis method[J]. International Journal of Computer Mathematics, 2011, 88(8): 1763-1775.
|
[34] |
Abbasbandy S, Magyari E, Shivanian E. The homotopy analysis method for multiple solutions of nonlinear boundary value problems[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(9/10): 3530-3536.
|
[35] |
Rees D A S, Pop I. Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate[J]. Journal of Applied Mathematics, 1988, 61(2): 179-197.
|
[36] |
Guram G S, Smith A C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Computers & Mathematics With Applications, 1980, 6(2): 213-233.
|
[37] |
von Krmn T. be Laminare und turbulente Reibung[J]. Zeitschrif für Angewandte Mathematik und Mechanik, 1921, 1: 233-252.
|
[38] |
Liao S J. An optimal homotopy-analysis approach for strongly nonlinear differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(8): 2003-2016.
|