Citation: | M.A.A.Hamad, M.Ferdows. On Similarity Solutions to the Viscous Flow and Heat Transfer of Nanofluid Over Nonlinearly Stretching Sheet[J]. Applied Mathematics and Mechanics, 2012, 33(7): 868-876. doi: 10.3879/j.issn.1000-0887.2012.07.007 |
[1] |
Eastman J A, Choi S U S, Li S, Yu W, Thompson L J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Appl Phys Lett, 2001, 78(6): 718-720.
|
[2] |
Lee S, Choi S U-S, Li S, Eastman J A. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. J Heat Transf, 1999, 121(2): 280-289.
|
[3] |
Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalous thermal conductivity enhancement in nanotube suspensions[J]. Appl Phys Lett, 2001, 79(14): 2252-2254.
|
[4] |
Xuan Y, Li Q. Heat transfer enhancement of nanofluids[J]. Int J Heat Mass Transf, 2000, 21(1): 58-64.
|
[5] |
Batchelor G K. Sedimentation in a dilute dispersion of spheres[J]. J Fluid Mech, 1972, 52(2): 45-268.
|
[6] |
Batchelor G K, Green J T. The hydrodynamic interaction of two small freely-moving[J]. J Fluid Mech, 1972, 56(2): 375-400.
|
[7] |
Bonnecaze R T, Brady J F. A method for determining the effective conductivity of dispersions of particles[J]. Proc R Soc Lond A, 1990, 430(1879): 285-313.
|
[8] |
Bonnecaze R T, Brady J F. The effective conductivity of random suspensions of spherical particles[J]. Proc R Soc Lond A, 1991, 432(1886): 445-465.
|
[9] |
Davis R H. The effective thermal conductivity of a composite material with spherical inclusions[J]. Int J Thermophys, 1986, 7(3): 609-620.
|
[10] |
Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems[J]. Ind Eng Chem Fundam, 1962, 1(3): 187-191.
|
[11] |
Jeffrey D J. Conduction through a random suspension of spheres[J]. Proc R Soc Lond A, 1973, 335(1602): 355-367.
|
[12] |
Lu S, Lin H. Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity[J]. J Appl Phys, 1996, 79(9): 6761-6769.
|
[13] |
Maxwell J C. A Treatise on Electricity and Magnetism[M]. 3rd ed. 1954 reprint. Dover, NY: Clarendon Press, 1891: 435-441.
|
[14] |
Congedo P M, Collura S, Congedo P M. Modeling and analysis of natural convection heat transfer in nanofluids[C]Proceedings of ASME Summer Heat Transfer Conference. USA: Florida, 2009, 3: 569-579.
|
[15] |
Ghasemi B, Aminossadati S M. Natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid[J]. Numerical Heat Transfer, Part A: Applications, 2009, 55(8): 807-823.
|
[16] |
Ho C J, Chen M W, Li Z W. Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity[J]. International Journal of Heat Mass Transfer, 2008, 51(17/18): 4506-4516.
|
[17] |
Ho C J, Chen M W, Li Z W. Effect on natural convection heat transfer of nanofluid in an enclosure due to uncertainties of viscosity and thermal conductivity[C]Proceedings of ASME/JSME Thermal Engineering Summer Heat Transfer Conference.Canada: British Columbia, 2007, 1: 833-841.
|
[18] |
Hamad M A A, Pop I, Ismail A I. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate[J]. Nonlinear Analysis: Real World Appl, 2011, 12(3): 1338-1346.
|
[19] |
Hamad M A A, Pop I. Unsteady MHD free convection flow past a vertical permeable flat plate in a rotating frame of reference with constant heat source in a nanofluid[J]. Heat Mass Transfer, 2011, 47(12): 1517-1524.
|
[20] |
Hamad M A A. Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field[J]. Int Comm Heat Mass Transfer, 2011, 38(4): 487-492.
|
[21] |
Hamad M A A, Ferdows M. Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a lie group analysis[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(1): 132-140.
|
[22] |
Das S K, Choi S U S, Yu W, Pradeep T. Nanofluids: Science and Technology[M]. New Jersey: Wiley, 2007.
|
[23] |
Trisaksri V, Wongwises S. Critical review of heat transfer characteristics nanofluids[J]. Renew Sustain Energy Rev, 2007, 11(3): 512-523.
|
[24] |
Wang X-Q, Mujumdar A S. Heat transfer characteristics of nanofluids: a review[J]. Int J Therm Sci, 2007, 46(1): 1-19.
|
[25] |
Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids[J]. Int J Heat Mass Transf, 2009, 52(13/14): 3187-3196.
|
[26] |
Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Canadian Journal of Chemical Engineering, 1977, 55(6): 744-746.
|
[27] |
Vajravelu K. Viscous flow over a nonlinearly stretching sheet[J]. Applied Mathematics and Computation, 2001, 124(3): 281-288.
|
[28] |
Raptis A, Perdikis C. Viscous flow over a non-linearly stretching sheet in the presence of a chemical reaction and magnetic field[J]. International Journal of Non-Linear Mechanics, 2006, 41(4): 527-529.
|
[29] |
Bataller R C. Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface[J].Journal of Materials Processing Technology, 2008, 203(1/3): 176-183.
|
[30] |
Prasad K V, Vajravelu K. Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 4956-4965.
|
[31] |
Ziabakhsh Z, Domairry G, Bararnia H, Babazadeh H. Analytical solution of flow and diffusion of chemically reactive species over a nonlinearly stretching sheet immersed in a porous medium[J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(1): 22-28.
|
[32] |
Akyildiz F T, Siginer D A. Galerkin-Legendre spectral method for the velocity and thermal boundary layers over a non-linearly stretching sheet[J]. Nonlinear Analysis: Real World Applications, 2010, 11(2): 735-741.
|
[33] |
Prasad K V, Vajravelu K, Datti P S. Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties[J]. International Journal of Non-Linear Mechanics, 2010, 45(3): 320-330.
|
[34] |
Afzal N. Momentum and thermal boundary layers over a two-dimensional or axisymmetric non-linear stretching surface in a stationary fluid[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/3): 540-547.
|
[35] |
Cortell R. Viscous flow and heat transfer over a nonlinearly stretching sheet[J]. Applied Mathematical and Computation, 2007, 184(2): 864-873.
|
[36] |
Oztop H F, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. Int J Heat Fluid Flow, 2008, 29(5): 1326-1336.
|
[37] |
Aminossadati S M, Ghasemi B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure[J]. European Journal of Mechanics B/Fluids, 2009, 28(5): 630-640.
|