M.A.A.Hamad, M.Ferdows. On Similarity Solutions to the Viscous Flow and Heat Transfer of Nanofluid Over Nonlinearly Stretching Sheet[J]. Applied Mathematics and Mechanics, 2012, 33(7): 868-876. doi: 10.3879/j.issn.1000-0887.2012.07.007
Citation: M.A.A.Hamad, M.Ferdows. On Similarity Solutions to the Viscous Flow and Heat Transfer of Nanofluid Over Nonlinearly Stretching Sheet[J]. Applied Mathematics and Mechanics, 2012, 33(7): 868-876. doi: 10.3879/j.issn.1000-0887.2012.07.007

On Similarity Solutions to the Viscous Flow and Heat Transfer of Nanofluid Over Nonlinearly Stretching Sheet

doi: 10.3879/j.issn.1000-0887.2012.07.007
  • Received Date: 2011-06-06
  • Rev Recd Date: 2011-12-28
  • Publish Date: 2012-07-15
  • The boundary-layer flow and heat transfer in a viscous fluid containing metallic nanoparticles over a nonlinear stretching sheet was analyzed. The stretching velocity was assumed to vary as a power function of the distance from the origin. The governing partial differential equation and auxiliary conditions were reduced to coupled nonlinear ordinary differential equations with the appropriate corresponding auxiliary conditions. The resulting non-linear ODEs were solved numerically. The influences of various relevant parameters, namely, the Eckert number Ec,the solid volume fraction of the nanoparticles and the nonlinear stretching parameter n were discussed and comparison with published results was presented. Different types of nanoparticles were studied. It was noted that the behavior of the fluid flow was changed with the change of the nanoparticles type.
  • loading
  • [1]
    Eastman J A, Choi S U S, Li S, Yu W, Thompson L J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Appl Phys Lett, 2001, 78(6): 718-720.
    [2]
    Lee S, Choi S U-S, Li S, Eastman J A. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. J Heat Transf, 1999, 121(2): 280-289.
    [3]
    Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalous thermal conductivity enhancement in nanotube suspensions[J]. Appl Phys Lett, 2001, 79(14): 2252-2254.
    [4]
    Xuan Y, Li Q. Heat transfer enhancement of nanofluids[J]. Int J Heat Mass Transf, 2000, 21(1): 58-64.
    [5]
    Batchelor G K. Sedimentation in a dilute dispersion of spheres[J]. J Fluid Mech, 1972, 52(2): 45-268.
    [6]
    Batchelor G K, Green J T. The hydrodynamic interaction of two small freely-moving[J]. J Fluid Mech, 1972, 56(2): 375-400.
    [7]
    Bonnecaze R T, Brady J F. A method for determining the effective conductivity of dispersions of particles[J]. Proc R Soc Lond A, 1990, 430(1879): 285-313.
    [8]
    Bonnecaze R T, Brady J F. The effective conductivity of random suspensions of spherical particles[J]. Proc R Soc Lond A, 1991, 432(1886): 445-465.
    [9]
    Davis R H. The effective thermal conductivity of a composite material with spherical inclusions[J]. Int J Thermophys, 1986, 7(3): 609-620.
    [10]
    Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems[J]. Ind Eng Chem Fundam, 1962, 1(3): 187-191.
    [11]
    Jeffrey D J. Conduction through a random suspension of spheres[J]. Proc R Soc Lond A, 1973, 335(1602): 355-367.
    [12]
    Lu S, Lin H. Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity[J]. J Appl Phys, 1996, 79(9): 6761-6769.
    [13]
    Maxwell J C. A Treatise on Electricity and Magnetism[M]. 3rd ed. 1954 reprint. Dover, NY: Clarendon Press, 1891: 435-441.
    [14]
    Congedo P M, Collura S, Congedo P M. Modeling and analysis of natural convection heat transfer in nanofluids[C]Proceedings of ASME Summer Heat Transfer Conference. USA: Florida, 2009, 3: 569-579.
    [15]
    Ghasemi B, Aminossadati S M. Natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid[J]. Numerical Heat Transfer, Part A: Applications, 2009, 55(8): 807-823.
    [16]
    Ho C J, Chen M W, Li Z W. Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity[J]. International Journal of Heat Mass Transfer, 2008, 51(17/18): 4506-4516.
    [17]
    Ho C J, Chen M W, Li Z W. Effect on natural convection heat transfer of nanofluid in an enclosure due to uncertainties of viscosity and thermal conductivity[C]Proceedings of ASME/JSME Thermal Engineering Summer Heat Transfer Conference.Canada: British Columbia, 2007, 1: 833-841.
    [18]
    Hamad M A A, Pop I, Ismail A I. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate[J]. Nonlinear Analysis: Real World Appl, 2011, 12(3): 1338-1346.
    [19]
    Hamad M A A, Pop I. Unsteady MHD free convection flow past a vertical permeable flat plate in a rotating frame of reference with constant heat source in a nanofluid[J]. Heat Mass Transfer, 2011, 47(12): 1517-1524.
    [20]
    Hamad M A A. Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field[J]. Int Comm Heat Mass Transfer, 2011, 38(4): 487-492.
    [21]
    Hamad M A A, Ferdows M. Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a lie group analysis[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(1): 132-140.
    [22]
    Das S K, Choi S U S, Yu W, Pradeep T. Nanofluids: Science and Technology[M]. New Jersey: Wiley, 2007.
    [23]
    Trisaksri V, Wongwises S. Critical review of heat transfer characteristics nanofluids[J]. Renew Sustain Energy Rev, 2007, 11(3): 512-523.
    [24]
    Wang X-Q, Mujumdar A S. Heat transfer characteristics of nanofluids: a review[J]. Int J Therm Sci, 2007, 46(1): 1-19.
    [25]
    Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids[J]. Int J Heat Mass Transf, 2009, 52(13/14): 3187-3196.
    [26]
    Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Canadian Journal of Chemical Engineering, 1977, 55(6): 744-746.
    [27]
    Vajravelu K. Viscous flow over a nonlinearly stretching sheet[J]. Applied Mathematics and Computation, 2001, 124(3): 281-288.
    [28]
    Raptis A, Perdikis C. Viscous flow over a non-linearly stretching sheet in the presence of a chemical reaction and magnetic field[J]. International Journal of Non-Linear Mechanics, 2006, 41(4): 527-529.
    [29]
    Bataller R C. Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface[J].Journal of Materials Processing Technology, 2008, 203(1/3): 176-183.
    [30]
    Prasad K V, Vajravelu K. Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 4956-4965.
    [31]
    Ziabakhsh Z, Domairry G, Bararnia H, Babazadeh H. Analytical solution of flow and diffusion of chemically reactive species over a nonlinearly stretching sheet immersed in a porous medium[J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(1): 22-28.
    [32]
    Akyildiz F T, Siginer D A. Galerkin-Legendre spectral method for the velocity and thermal boundary layers over a non-linearly stretching sheet[J]. Nonlinear Analysis: Real World Applications, 2010, 11(2): 735-741.
    [33]
    Prasad K V, Vajravelu K, Datti P S. Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties[J]. International Journal of Non-Linear Mechanics, 2010, 45(3): 320-330.
    [34]
    Afzal N. Momentum and thermal boundary layers over a two-dimensional or axisymmetric non-linear stretching surface in a stationary fluid[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/3): 540-547.
    [35]
    Cortell R. Viscous flow and heat transfer over a nonlinearly stretching sheet[J]. Applied Mathematical and Computation, 2007, 184(2): 864-873.
    [36]
    Oztop H F, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. Int J Heat Fluid Flow, 2008, 29(5): 1326-1336.
    [37]
    Aminossadati S M, Ghasemi B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure[J]. European Journal of Mechanics B/Fluids, 2009, 28(5): 630-640.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1997) PDF downloads(871) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return