Citation: | WANG Bo. Asymptotic Analysis on Weakly Forced Vibration of an Axially Moving Viscoelastic Beam Constituted by Standard Linear Solid Model[J]. Applied Mathematics and Mechanics, 2012, 33(6): 771-780. doi: 10.3879/j.issn.1000-0887.2012.06.010 |
[1] |
Chen L Q. Nonlinear vibrations of axially moving beams[C]Evans T. Nonlinear Dynamics. INTECH, Croatia, 2010: 145-172.
|
[2] |
Pasin F. Ueber die stabilitt der beigeschwingungen von in laengsrichtung periodisch hin und herbewegten stben[J]. Ingenieur-Archiv, 1972, 41(6):387-393.
|
[3] |
z H R, Pakdemirli M, zkaya E. Transition behavior from string to beam for an axially accelerating material[J]. Journal of Sound and Vibration, 1998, 215(3): 571-576.
|
[4] |
z H R. On the vibrations of an axially traveling beam on fixed supports with variable velocity[J]. Journal of Sound and Vibration, 2001, 239(3): 556-564.
|
[5] |
Suweken G, van Horssen W T. On the transversal vibrations of a conveyor belt with a low and time-varying velocity—part Ⅱ: the beam like case[J]. Journal of Sound and Vibration, 2003, 267(5/6): 1007-1027.
|
[6] |
Pakdemirli M, z H R. Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations[J]. Journal of Sound and Vibration, 2008, 311(3/5): 1052-1074.
|
[7] |
Chen L Q, Yang X D, Cheng C J. Dynamic stability of an axially accelerating viscoelastic beam[J]. Eur J Mech A/Solid, 2004, 23(4): 659-666.
|
[8] |
Chen L Q, Yang X D. Stability in parametric resonances of an axially moving viscoelastic beam with time-dependent velocity[J]. Journal of Sound and Vibration, 2005, 284(3/5): 879-891.
|
[9] |
Yang X D, Chen L Q. Stability in parametric resonance of axially accelerating beams constituted by Boltzmann’s superposition principle[J]. Journal of Sound and Vibration, 2006, 289(1/2): 54-65.
|
[10] |
Chen L Q, Yang X D. Vibration and stability of an axially moving viscoelastic beam with hybrid supports[J]. Eur J Mech A/Solid, 2006, 25(6): 996-1008.
|
[11] |
Maccari A. The asymptotic perturbation method for nonlinear continuous systems[J]. Nonlinear Dynamics, 1999, 19(1): 1-18.
|
[12] |
Boertjens G J, van Horssen W T. On interactions of oscillation modes for a weakly non-linear undamped elastic beam with an external force[J]. Journal of Sound and Vibration, 2000, 235(2): 201-217.
|
[13] |
Chen L Q, Lim C W, Hu Q Q, Ding H. Asymptotic analysis of a vibrating cantilever with a nonlinear boundary[J]. Sci China Ser G-Phys Mech Astron, 2009, 52(9): 1414-1422.
|
[14] |
Chen L Q, Yang X D. Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models[J]. Int J Solids Struct, 2005, 42(1): 37-50.
|
[15] |
Yang T Z, Fang B, Chen Y, Zhen Y X. Approximate solutions of axially moving viscoelastic beams subject to multi-frequency excitations[J]. International Journal of Non-Linear Mechanics, 2009, 44(2): 230-238.
|
[16] |
Ding H, Chen L Q. Nonlinear models for transverse forced vibration of axially moving viscoelastic beams[J]. Shock and Vibration, 2011, 18(1/2): 281-287.
|
[17] |
Chen L Q, Ding H. Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams[J]. ASME Journal of Vibration and Acoustics, 2010, 132(1): 011009.
|
[18] |
Mockensturm E M, Guo J. Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings[J]. ASME J Appl Mech, 2005, 72(3): 374-380.
|
[19] |
Chen L Q, Yang X D. Bifurcation and chaos of an axially accelerating viscoelastic beam[J]. Chaos, Solitons and Fractals, 2005, 23(1): 249-258.
|
[20] |
Hou Z, Zu J W. Non-linear free oscillations of moving viscoelastic belts[J]. Mech Mach Theory, 2002, 37(9): 925-940.
|
[21] |
Fung R F, Huang J S, Chen Y C, Yao C M. Nonlinear dynamic analysis of the viscoelastic string with a harmonically varying transport speed[J]. Comput Struct, 1998, 66(6): 777-784.
|
[22] |
Ha J L, Chang J R, Fung R F. Nonlinear dynamic behavior of a moving viscoelastic string undergoing three-dimensional vibration[J]. Chaos, Solitons & Fractals, 2007, 33(4): 1117-1134.
|
[23] |
Chen L Q, Chen H. Asymptotic analysis on nonlinear vibration of axially accelerating viscoelastic strings with the standard linear solid model[J]. J Eng Math, 2010, 67(3): 205-218.
|
[24] |
Chen L Q, Ding H. Steady-state responses of axially accelerating viscoelastic beams: approximate analysis and numerical confirmation[J]. Sci China Ser G-Phys Mech Astron, 2008, 51(11): 1701-1721.
|
[25] |
Ding H, Chen L Q. On two transverse nonlinear models of axially moving beams[J]. Sci China Ser E-Tech Sci, 2009, 52(3): 743-751.
|
[26] |
Chen L Q, Jean W Z. Solvability condition in multi-scale analysis of gyroscopic continua[J]. Journal of Sound and Vibration, 2008, 309(1/2): 338-342.
|