M.Nazar, Fatima Shahid, M.Saeed Akram, Q.Sultan. Flow on Oscillating Rectangular Duct for Maxwell Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(6): 678-691. doi: 10.3879/j.issn.1000-0887.2012.06.004
Citation: M.Nazar, Fatima Shahid, M.Saeed Akram, Q.Sultan. Flow on Oscillating Rectangular Duct for Maxwell Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(6): 678-691. doi: 10.3879/j.issn.1000-0887.2012.06.004

Flow on Oscillating Rectangular Duct for Maxwell Fluid

doi: 10.3879/j.issn.1000-0887.2012.06.004
  • Received Date: 2011-04-13
  • Rev Recd Date: 2012-02-11
  • Publish Date: 2012-06-15
  • An analysis for the unsteady flow of an incompressible Maxwell fluid in an oscillating rectangular cross section was presented. Using the Fourier and Laplace transforms as mathematical tool, the solutions were presented as sum of steady-state and transient solutions. For large times, when the transients disappear, the solution was represented by the steady-state solution. Solutions for Newtonian fluids appear as limiting cases of the solutions obtained here. In the absence of frequency of oscillation, the problem for flow of Maxwell fluid in a duct of rectangular cross-section moving parallel to its length was obtained. Finally, the required time to reach the steady-state for sine oscillations of the rectangular duct is obtained by graphical illustrations for different parameters. Moreover, the graphs are sketched for velocity for the variations of x and y.
  • loading
  • [1]
    Vieru D, Nazar M, Fetecau Corina, Fetecau C. New exact solutions corresponding to the first problem of Stokes for Oldroyd-B fluids[J]. Int J Computers and Mathematics With Appl, 2008, 55(8): 1644-1652.
    [2]
    Fetecau C, Fetecau Corina. Decay of a potential vortex in a Maxwell fluid[J]. Int J Non-Linear Mech, 2003, 38(7): 985-990.
    [3]
    Fetecau C, Fetecau Corina. A new exact solution for the flow of a Maxwell fluid past an infinite plate[J]. Int J Non-Linear Mech, 2003, 38(3): 423-427.
    [4]
    Fetecau C, Fetecau Corina. The Rayleigh-Stokes-Problem for a fluid of Maxwellian type[J]. Int J Non-Linear Mech, 2003, 38(4): 603-607.
    [5]
    Nadeem S, Asghar S, Hayat T, Hussain Mazhar. The Rayleigh Stokes problem for rectangular pipe in Maxwell and second grade fluid[J]. Meccanica, 2008, 43(5): 495-504.
    [6]
    Chen C K, Chen C I, Yang Y T. Unsteady unidirectional flow of a Maxwell fluid in a circular duct with different given volume flow rate conditions[J]. J Mechanical Engineering Science, 2002, 216(5): 583-590.
    [7]
    Broer L J F. On the hydrodynamics of viscoelastic fluids[J]. Appl Sci Res A, 1956, 6(2/3): 226-236.
    [8]
    Thurston G R. Theory of oscillation of a viscoelastic medium between parallel planes[J]. J Appl Phys, 1959, 30(12): 1855-1860.
    [9]
    Thurston G R. Theory of oscillation of a viscoelastic fluid in a circular tube[J]. JASA, 1960, 32(2): 210-213.
    [10]
    Jones J R, Walters T S. Flow of elastico-viscous liquids in channels under the influence of a periodic pressure gradient—part Ⅰ[J]. Rheol Acta , 1967, 6(3): 240-245.
    [11]
    Jones J R, Walters T S. Flow of elastico-viscous liquids in channels under the influence of a periodic pressure gradient—part Ⅱ[J]. Rheol Acta, 1967, 6(4): 330-338.
    [12]
    Peev G, Elenkov D, Kunev I. On the problem of oscillatory laminar flow of elastico-viscous liquids in channels[J]. Rheol Acta, 1970, 9(4): 506-508.
    [13]
    Bhatnagar R K. Flow of an Oldroyd fluid in a circular pipe with time dependent pressure gradient[J]. Appl Sci Res, 1975, 30(4): 241-267.
    [14]
    Ramkissoon H, Eswaran C V, Majumdar S R. Unsteady flow of an elastico-viscous fluid in tubes of uniform cross-section[J]. Int J Non-Linear Mech, 1989, 24(6): 585-597.
    [15]
    Rahaman K D, Ramkissoon H. Unsteady axial viscoelastic pipe flows[J]. J Non-Newtonian Fluid Mech, 1995, 57(1): 27-38.
    [16]
    Walitza E, Maisch E, Chmiel H, Andrade I. Experimental and numerical analysis of oscillatory tube flow of viscoelastic fluids represented at the example of human blood[J]. Rheol Acta, 1979, 18(1): 116-121.
    [17]
    Bohme G. Stromungsmechanik Nicht-Newtonscher Fluid[M]. Stuttgart: B G Teubner, 1981.
    [18]
    Wood W P. Transient viscoelastic helical flows in pipes of circular and annular cross-section[J]. J Non-Newtonian Fluid Mech, 2001, 100(1/3): 115-126.
    [19]
    Nazar M, Zulqarnain M, Saeed Akram M, Asif M. Flow through an oscillating rectangular duct for generalized Maxwell fluid with fractional derivatives[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(8): 3219-3234.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1403) PDF downloads(1087) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return