LI Ai-bing, ZHANG Li-feng, ZANG Zeng-liang, ZHANG Yun. Iterative and Adjusting Method for Computing Stream Function and Velocity Potential in Limited Domains and Its Convergence Analysis[J]. Applied Mathematics and Mechanics, 2012, 33(6): 651-662. doi: 10.3879/j.issn.1000-0887.2012.06.002
Citation: LI Ai-bing, ZHANG Li-feng, ZANG Zeng-liang, ZHANG Yun. Iterative and Adjusting Method for Computing Stream Function and Velocity Potential in Limited Domains and Its Convergence Analysis[J]. Applied Mathematics and Mechanics, 2012, 33(6): 651-662. doi: 10.3879/j.issn.1000-0887.2012.06.002

Iterative and Adjusting Method for Computing Stream Function and Velocity Potential in Limited Domains and Its Convergence Analysis

doi: 10.3879/j.issn.1000-0887.2012.06.002
  • Received Date: 2011-09-26
  • Rev Recd Date: 2012-03-01
  • Publish Date: 2012-06-15
  • Stream function and velocity potential can be easily computed by solving Poisson equations in a unique way for the global domain. Because of various assumptions for handling boundary conditions, the solution is not unique when a limited domain is concerned. So, it is very important to reduce or eliminate the effects caused by uncertain boundary condition. An iterative and adjusting method based on the Endlich iteration method was presented to compute stream function and velocity potential for limited domains. This method did not need an explicitly specifying the boundary condition, while it could obtain the effective solution and was proved to be successful in decomposing and reconstructing the horizontal wind field with very small errors. The convergence of the method depended on relative value between the distances of grid in two different directions and was related to the value of the adjusting factor. Applying the method in Arakawa grids and irregular domains, the results showed that it could not only obtain accurate vorticity and divergence, but also accurately decompose and reconstruct the original wind field. Hence, the iterative and adjusting method was accurate and reliable.
  • loading
  • [1]
    Hawkins H F, Rosenthal S L. On the computation of stream function from the wind field[J]. Mon Wea Rev, 1965, 93(4):245-252.
    [2]
    吕美仲, 候志明, 周毅. 动力气象学[M]. 北京:气象出版社, 2004:113-114. (L Mei-zhong, HOU Zhi-ming, ZHOU Yi. Dynamic Meteorology[M]. Beijing: Meteorological Press, 2004:113-114.(in Chinese))
    [3]
    Frederiksen J S, Frederiksen C S. Monsoon disturbances, intraseasonal oscillations, teleconnection patterns, blocking, and storm tracks of the global atmosphere during January 1979: linear theory[J]. J Atmos Sci, 1993, 50(10):1349-1372.
    [4]
    Knutson T R, Weickmann K M. 30~60 day atmospheric oscillations: composite life cycles of convection and circulation anomalies[J]. Mon Wea Rev, 1987, 115(7):1407-1436.
    [5]
    Lorenc A C, Ballard S P, Bell R S, Ingleby N B, Andrews P L F, Barker D M, Bray J R, Clayton A M, Dalby T, Li D, Payne T J, Saunders F W. The met office global 3-dimensional variational data assimilation scheme[J]. Quart J Roy Meteor Soc, 2000, 126(570):2991-3012.
    [6]
    Barker D M, Huang W, Guo Y R, Bourgeois A J, Xiao Q N. A three-dimensional(3DVAR) data assimilation system for use with MM5: implementation and initial results[J]. Mon Wea Rev, 2004, 132(4):897-914.
    [7]
    Bourke W. An efficient one-level primitive equation spectral model[J]. Mon Wea Rev, 1972, 100(9):683-689.
    [8]
    Bijlsma S J, Hafkensheid L M, Lynch P. Computation of the streamfunction and velocity potential and reconstruction of the wind field[J]. Mon Wea Rev, 1986, 114(8):1547-1551.
    [9]
    Tangri A C. Computation of streamlines associated with a low latitude cyclone[J]. Indian J Meteor Geophys, 1966, 17:401-406.
    [10]
    Phillips N A. Geostrophic errors in predicting the Appalachian storm of November 1950[J]. Geophysica, 1958, 6:389-405.
    [11]
    Brown J A, Neilon J R. Case studies of numerical wind analysis[J]. Mon Wea Rev, 1961, 89(3): 83-90.
    [12]
    Sangster W E. A method of representing the horizontal pressure force without reduction of pressures to sea level[J]. J Meteor, 1960, 17(2):166-176.
    [13]
    Sangster W E. An improved technique for computing the horizontal pressure-gradient force at the earth’s surface[J]. Mon Wea Rev, 1987, 115(7): 1358-1368.
    [14]
    Shukh J, Saha K R. Computation of non-divergent streamfunction and irrotational velocity potential from the observed winds[J]. Mon Wea Rev, 1974, 102(6):419-425.
    [15]
    Lynch P. Deducing the wind from vorticity and divergence[J]. Mon Wea Rev, 1988, 116(1):86-93.
    [16]
    Lynch P. Partitioning the wind in a limited domain[J]. Mon Wen Rev, 1989, 117(7):1492-1500.
    [17]
    Chen Q S, Kuo Y H. A harmonic-sine series expansion and its application to partitioning and reconstruction problems in a limited area[J]. Mon Wea Rev, 1992, 120(1): 91-112.
    [18]
    Chen Q S, Kuo Y H. A consistency condition for wind-field reconstruction in a limited area and harmonic-cosine series expansion[J]. Mon Wea Rev, 1992, 120(11):2653-2670.
    [19]
    朱宗申, 朱国富.有限区域风速场求解流函数和速度势场的有效方案[J]. 应用气象学报, 2008 19(1):10-18. (ZHU Zong-shen, ZHU Guo-fu. An effective method to solve the streamfunction and velocity potential from a wind field in a limited area[J]. Quart J Appl Meteor Sci, 2008, 19(1):10-18. (in Chinese))
    [20]
    朱宗申, 朱国富, 张林. 用有限区域风速场准确求解流函数和速度势场的方法[J]. 大气科学, 2009, 33(4):811-824. (ZHU Zong-shen, ZHU Guo-fu, ZHANG Lin. An accurate solution method of stream function and velocity potential from the wind field in a limited area[J]. Chin J Atmos Sci, 2009, 33(4):811-824. (in Chinese))
    [21]
    周玉淑, 曹洁, 高守亭. 有限区域风场分解方法及其在台风SAOMEI研究中的应用[J]. 物理学报, 2008, 57(10):6654-6665. (ZHOU Yu-shu, CAO Jie, GAO Shou-ting. The method of decomposing wind field in a limited area and its application to typhoon SAOMEI[J]. Acta Phys Sin, 2008, 57(10):6654-6665. (in Chinese))
    [22]
    周玉淑, 曹洁. 有限区域风场的分解和重建[J]. 物理学报, 2010, 59(4):2898-2906. (ZHOU Yu-shu, CAO Jie. Partitioning and reconstruction problem of the wind in a limited region[J]. Acta Phys Sin, 2010, 59(4):2898-2906. (in Chinese))
    [23]
    Endlich R M. An iterative method for altering the kinematic properties of wind fields[J]. Journal of the Applied Meteorology, 1967, 6(5):837-844.
    [24]
    Davies-Jones R. On the formulation of surface geostrophic stream function[J]. Mon Wea Rev, 1988, 116(9):1824-1826.
    [25]
    Li Z J, Chao Y. Computation of the streamfunction and velocity potential for limited and irregular domains[J]. Mon Wea Rev, 2006, 134(11):3384-3394.
    [26]
    刘健文, 郭虎, 李耀东, 刘还珠, 吴宝俊. 天气分析预报物理量计算基础[M]. 北京:气象出版社, 2005:249-251. (LIU Jian-wen, GUO Hu, LI Yao-dong, LIU Huan-zhu, WU Bao-jun. The Basis of Weather Analysis and Prediction Physical Quantity Calculation[M]. Beijing: China Meteorologica Press, 2005:249-251. (in Chinese))
    [27]
    张文生. 科学计算中的偏微分方程有限差分法[M]. 北京: 高等教育出版社,2006:172-172. (ZHANG Wen-sheng. Finite Difference Methods for Partial Differential Equations in Science Computation[M]. Beijing: Higher Education Press, 2004:172-172. (in Chinese))
    [28]
    Arakawa A. Computational design for long-term numerical integrations of the equations of atmospheric motion:two dimensional incompressible flow: part Ⅰ[J]. J Comput Phys, 1966, 1(1): 119-143.
    [29]
    Watterson I G. Decomposition of global ocean currents using a simple iterative method[J]. J Atmos Oceanic Technol, 2001, 18(4):691-703.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1824) PDF downloads(949) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return