Abdul-Kahar Rosmila, Ramasamy Kandasamy, Ismoen Muhaimin. Lie Symmetry Group Transformation for MHD Natural Convection Flow of a Nanofluid Over a Linearly Porous Stretching Sheet in the Presence of Thermal Stratification[J]. Applied Mathematics and Mechanics, 2012, 33(5): 562-573. doi: 10.3879/j.issn.1000-0887.2012.05.005
Citation: Abdul-Kahar Rosmila, Ramasamy Kandasamy, Ismoen Muhaimin. Lie Symmetry Group Transformation for MHD Natural Convection Flow of a Nanofluid Over a Linearly Porous Stretching Sheet in the Presence of Thermal Stratification[J]. Applied Mathematics and Mechanics, 2012, 33(5): 562-573. doi: 10.3879/j.issn.1000-0887.2012.05.005

Lie Symmetry Group Transformation for MHD Natural Convection Flow of a Nanofluid Over a Linearly Porous Stretching Sheet in the Presence of Thermal Stratification

doi: 10.3879/j.issn.1000-0887.2012.05.005
  • Received Date: 2011-03-23
  • Rev Recd Date: 2011-12-21
  • Publish Date: 2012-05-15
  • The MHD convective flow and heat transfer of an incompressible viscous nanofluid past a semi infinite vertical stretching sheet in the presence of thermal stratification were examined. The partial differential equations governing the problem under consideration were transformed by a special form of Lie symmetry group transformations viz oneparameter group of transformation into a system of ordinary differential equations which were solved numerically using Runge Kutta Gill based shooting method. The conclusion is drawn that the flow field and temperature and nanoparticle volume fraction profiles are significantly influenced by thermal stratification and magnetic field.
  • loading
  • [1]
    Choi S. Enhancing thermal conductivity of fluids with nanoparticle[C]Siginer D A, Wang H P. Developments and Applications of Non-Newtonian Flows. ASME MD Vol 231,New York and FED, 1995, 66(1): 99-105.
    [2]
    Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles[J]. Netsu Bussei, 1993, 7(2): 227-233.
    [3]
    Buongiorno J, Hu W. Nanofluid coolants for advanced nuclear power plants[C]Proceedings of ICAPP’05, Paper no 5705. Seoul: Curran Associctes, May, 2005: 15-19.
    [4]
    Buongiorno J. Convective transport in nanofluids[J]. ASME Journal of Heat Transfer, 2006, 128(2): 240-250.
    [5]
    Kuznetsov A V, Nield D A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. International Journal of Thermal Sciences, 2010, 49(2): 243-247.
    [6]
    Nield D A, Kuznetsov A V. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid[J]. International Journal of Heat and Mass Transfer, 2009, 52(9): 5792-5795.
    [7]
    Cheng P, Minkowycz W J. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike[J]. Journal of Geophysics Research, 1977, 82(6): 2040-2044.
    [8]
    Birkoff G. Mathematics for engineers[J]. Electrical Engineering, 1948, 67(5): 1185-1188.
    [9]
    Birkoff G. Hydrodynamics[M]. New Jersey: Princeton University Press, 1960.
    [10]
    Moran M J, Gaggioli R A. Similarity analysis via group theory[J]. AIAA Journal, 1968, 6(8): 2014-2016.
    [11]
    Moran M J, Gaggioli R A. Reduction of the number of variables in systems of partial differential equations with auxiliary conditions[J]. SIAM Journal of Applied Mathematics, 1968, 16(2): 202-215.
    [12]
    Ibrahim F S, Hamad M A A. Group method analysis of mixed convection boundary layer flow of a micropolar fluid near a stagnation point on a horizontal cylinder[J]. Acta Mechanica, 2006, 181(1): 65-81.
    [13]
    Yurusoy M, Pakdemirli M. Symmetry reductions of unsteady three-dimensional boundary layers of some non-Newtonian fluids[J]. International Journal of Engineering Sciences, 1997, 35(2): 731-740.
    [14]
    Yurusoy M, Pakdemirli M. Exact solutions of boundary layer equations of a special non-Newtonian fluid over a stretching sheet[J]. Mechanics Research Communications, 1999, 26 (1):171-175.
    [15]
    Yurusoy M, Pakdemirli M, Noyan O F. Lie group analysis of creeping flow of a second grade fluid[J]. International Journal of Non-Linear Mechanics, 2001, 36(8): 955-960.
    [16]
    Makinde O D, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition[J]. International Journal of Thermal Science, 2011, 50(5): 1326-1332.
    [17]
    Hassanien I A, Hamad M A A. Group theoretic method for unsteady free convection flow of a micropolar fluid along a vertical plate in a thermally stratified medium[J]. Applied Mathematical Modeling, 2008, 32(6): 1099-1114.
    [18]
    Oztop H F, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1326-1336.
    [19]
    Nakayama A, Koyama H.Similarity solutions for buoyancy induced flows over a non-isothermal curved surface in a thermally stratified porous medium[J]. Applied Scientific Research, 1989, 46(2): 309-314.
    [20]
    Aminossadati S M, Ghasemi B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure[J]. European Journal of Mechanics B/Fluids, 2009, 28(4): 630-640.
    [21]
    Crane L J. Flow past a stretching plate[J]. Z Angew Mathematik und Physik (ZAMP), 1970, 21(4): 645-647.
    [22]
    Vajravelu K. Flow and heat transfer in a porous medium over a stretching surface[J]. Z Angew Mathematik und Mechanik (ZAMM), 1994, 74(12): 605-614.
    [23]
    Abel M S, Veena P H. Visco-elastic fluid flow and heat transfer in a porous media over a stretching sheet[J]. International Journal of Non-Linear Mechanics, 1998, 33(3): 531-540.
    [24]
    Abel M S, Khan S K, Prasad K V. Momentum and heat transfer in visco-elastic fluid in a porous medium over a non-isothermal stretching sheet[J]. International Journal of Numerical Methods and Heat Fluid Flow, 2000, 10(3): 786-801.
    [25]
    Gill S. A process for the step-by-step integration of differential equations in an automatic digital computing machine[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1951, 47(1): 96-108.
    [26]
    Grubka L G, Bobba K M. Heat transfer characteristics of a continuous stretching surface with variable temperature[J]. ASME J Heat Transfer, 1985, 107(2): 248-250.
    [27]
    Ali M E. Heat transfer characteristics of a continuous stretching surface[J]. Heat and Mass Transfer, 1994, 29(4): 227-234.
    [28]
    Ishak A, Nazar R, Pop I. Boundary layer flow and heat transfer over an unsteady stretching vertical surface[J]. Meccanica, 2009, 44(2): 369-375.
    [29]
    Vajravelu K, Prasad K V, Lee J, Lee C, Pop I, Van Gorder R A. Convective heat transfer in the flow of viscous Ag-water and Cu-water nanofluids over a stretching surface[J]. International Journal of Thermal Sciences, 2011, 50(5): 843-851.
    [30]
    Hamad M A A, Pop I, Ismail Md A I. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate[J]. Nonlinear Analysis: Real World Applications, 2011, 12(3): 1338-1346.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1873) PDF downloads(680) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return