HE Gui-tian, LUO Mao-kang. Dynamic Behavior of Fractional Order Duffing Chaotic System and Its Synchronization Via Single Active Control[J]. Applied Mathematics and Mechanics, 2012, 33(5): 539-552. doi: 10.3879/j.issn.1000-0887.2012.05.003
Citation: HE Gui-tian, LUO Mao-kang. Dynamic Behavior of Fractional Order Duffing Chaotic System and Its Synchronization Via Single Active Control[J]. Applied Mathematics and Mechanics, 2012, 33(5): 539-552. doi: 10.3879/j.issn.1000-0887.2012.05.003

Dynamic Behavior of Fractional Order Duffing Chaotic System and Its Synchronization Via Single Active Control

doi: 10.3879/j.issn.1000-0887.2012.05.003
  • Received Date: 2011-08-30
  • Rev Recd Date: 2012-02-05
  • Publish Date: 2012-05-15
  • Along with the deepening of research on physics and technology,dynamics of fractional order nonlinear systems and synchronization of fractional order chaotic systems focus strong attention on itself. The dynamic behavior including chaotic properties of fractional order Duffing systems was extensively investigated and,via the stability criterion of linear fractional systems,the synchronization of a fractional nonautonomous system was obtained. Especially,a kind of effective singly active control was proposed and applied to synchronize the fractional order Duffing system. The corresponding numerical results demonstrated the effectiveness of the proposed methods.
  • loading
  • [1]
    Podlubny I. Fractional Differential Equations[M]. New York: Academic Press, 1999.
    [2]
    Kilbas A A,Sarivastava H M,Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. New York: Elsevier, 2006.
    [3]
    Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity[M]. London: Imperial College Press, 2010.
    [4]
    Sheu L J, Chen H K, Chen J H, Tam L M. Chaotic dynamics of the fractionally damped Duffing equation[J]. Chaos Solitons Fractals, 2007,32(4): 1459-1468.
    [5]
    Wang Z H, Hu H Y. Stability of a linear oscillator with damping force of the fractional-order derivative[J]. Science China, 2010,53(2): 345-352.
    [6]
    Ge Z M, Ou C Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal[J]. Chaos,Solitons Fractals, 2008, 35(2): 705-717.
    [7]
    Xin G, Yu J B. Chaos in the fractional order periodically forced complex Duffing’s oscillators[J]. Chaos Solitons Fractals, 2005, 24(4): 1097-1104.
    [8]
    Chen J H, Chen W C. Chaotic dynamics of the fractionally damped van der Pol equation[J]. Chaos Solitons Fractals, 2008, 35(1): 188-198.
    [9]
    Yu Y G, Li H X, Wang S, Yu J Z. Dyanmic analysis of a fractional-order Lorenz chaotic system[J]. Chaos Solitons Fractals, 2009,42(2): 1181-1189.
    [10]
    C·K·阿衡. 基于混沌同步化的广义无源性[J]. 应用数学和力学,2010,31(8):961-970.(Choon Ki Ahn. Generalized passivity-based chaos synchronization[J].Applied Mathematics and Mechanics(English Edition), 2010,31(8): 1009-1018.)
    [11]
    柴元, 吕翎, 赵鸿雁. 异结构离散型混沌系统的延迟同步[J]. 应用数学和力学, 2010, 31(6): 703-709.(CHAI Yuan, L Ling, ZHAO Hong-yan. Lag synchronization between discrete chaotic systems with diverse structure[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(6): 733-738.)
    [12]
    刘艳, 吕翎. N个异结构混沌系统的环链耦合同步[J]. 应用数学和力学,2008,29(10):1181-1190.(LIU Yan, L Ling. Synchronization of N different coupled chaotic systems with ring and chain connections[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(10): 1299-1308.)
    [13]
    Albert C J L, Fuhong M. Synchronization dynamics of two different dynamical systems[J]. Chaos Solitons Fractals, 2011,44(6): 362-380.
    [14]
    Albert C J L. A theory for synchronization of dynamical systems[J]. Commun Nonlinear Sci Numer Simulat, 2009,14(5): 1901-1951.
    [15]
    Habib D, Antonio L. Adaptive unknown-input observers-based synchronization of chaotic systems for telecommunication[J]. IEEE Trans Circuits Sys I Reg Papers, 2011, 58(4): 800-812.
    [16]
    Olga I M, Alexey A K, Alexander E H. Generalized synchronization of chaos for secure communication: Remarkable stability to noise[J]. Phys Lett A, 2010, 374(29): 2925-2931.
    [17]
    Wang X Y, He Y J, Wang M J. Chaos control of a fractional order modified coupled dynamos system[J]. Nonlinear Anal, 2009, 71(12): 6126-6134.
    [18]
    Sachin B, Varsha D G. Synchronization of different fractional order chaotic systems using actice control[J]. Commun Nolinear Sci Numer Simulat, 2010,15(11): 3536-3546.
    [19]
    Wu X J, Lu Y. Generalized projective synchronization of the fractional-order Chen hyperchaotic system[J]. Nonlinear Dyn, 2009,57(1/2): 25-35.
    [20]
    Matouk A E. Chaos, feedback control and synchronization of a fractional-order modified Autonomous van der Pol-Duffing circuit[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(2): 975-986.
    [21]
    Abel A, Schwarz W. Chaos communications-principles, schemes, and system analysis[J]. P IEEE, 2002, 90(5): 691-710.
    [22]
    Hu N Q, Wen X S. The application of duffing oscillator in characteristic signal detection of early fault[J]. J Sound Vib, 2003, 268(5): 917-931.
    [23]
    Nadakuditi R R, Silverstein J W. Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples[J]. IEEE Trans Ind Electron, 2010, 4(3): 468-480.
    [24]
    Zhao Z, Wang F L, Jia M X, Wang S. Intermittent-chaos-and-cepstrum-analysis-based early fault detection on shuttle valve of hydraulic tube tester[J]. IEEE Trans Ind Electron, 2009, 56(7): 2764-2770.
    [25]
    Diethelm K, Ford N J. Analysis of fractional differential equations[J]. J Math Anal Appl, 2002, 265(2): 229-248.
    [26]
    Li C P, Zhang F R. A survey on the stability of fractional differential equations[J]. Eur Phys J Special Topics, 2011, 193(1): 27-47.
    [27]
    Sabattier J, Moze M, Farges C. LMI stability conditions for fractional order system[J]. Comput Math Appl, 2010, 59(5): 1594-1609.
    [28]
    Thavazoei M S, Haeri M. A note on the stability of fractional order system[J]. Math Comput Simul, 2009, 79(5): 1566-1576.
    [29]
    Diethelm K, Ford N J. Multi-order fractional differential equations and their numerical solution[J]. Appl Math Comput, 2004, 154(3): 621-640.
    [30]
    Diethelm K, Ford N J, Freed A D, Luchko Y. Algorithms for the fractional calculus:a selection of numerical method[J]. Comput Methods Appl Mech Engrg, 2005, 194(6/8): 743-773.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1546) PDF downloads(831) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return