Citation: | HE Gui-tian, LUO Mao-kang. Dynamic Behavior of Fractional Order Duffing Chaotic System and Its Synchronization Via Single Active Control[J]. Applied Mathematics and Mechanics, 2012, 33(5): 539-552. doi: 10.3879/j.issn.1000-0887.2012.05.003 |
[1] |
Podlubny I. Fractional Differential Equations[M]. New York: Academic Press, 1999.
|
[2] |
Kilbas A A,Sarivastava H M,Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. New York: Elsevier, 2006.
|
[3] |
Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity[M]. London: Imperial College Press, 2010.
|
[4] |
Sheu L J, Chen H K, Chen J H, Tam L M. Chaotic dynamics of the fractionally damped Duffing equation[J]. Chaos Solitons Fractals, 2007,32(4): 1459-1468.
|
[5] |
Wang Z H, Hu H Y. Stability of a linear oscillator with damping force of the fractional-order derivative[J]. Science China, 2010,53(2): 345-352.
|
[6] |
Ge Z M, Ou C Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal[J]. Chaos,Solitons Fractals, 2008, 35(2): 705-717.
|
[7] |
Xin G, Yu J B. Chaos in the fractional order periodically forced complex Duffing’s oscillators[J]. Chaos Solitons Fractals, 2005, 24(4): 1097-1104.
|
[8] |
Chen J H, Chen W C. Chaotic dynamics of the fractionally damped van der Pol equation[J]. Chaos Solitons Fractals, 2008, 35(1): 188-198.
|
[9] |
Yu Y G, Li H X, Wang S, Yu J Z. Dyanmic analysis of a fractional-order Lorenz chaotic system[J]. Chaos Solitons Fractals, 2009,42(2): 1181-1189.
|
[10] |
C·K·阿衡. 基于混沌同步化的广义无源性[J]. 应用数学和力学,2010,31(8):961-970.(Choon Ki Ahn. Generalized passivity-based chaos synchronization[J].Applied Mathematics and Mechanics(English Edition), 2010,31(8): 1009-1018.)
|
[11] |
柴元, 吕翎, 赵鸿雁. 异结构离散型混沌系统的延迟同步[J]. 应用数学和力学, 2010, 31(6): 703-709.(CHAI Yuan, L Ling, ZHAO Hong-yan. Lag synchronization between discrete chaotic systems with diverse structure[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(6): 733-738.)
|
[12] |
刘艳, 吕翎. N个异结构混沌系统的环链耦合同步[J]. 应用数学和力学,2008,29(10):1181-1190.(LIU Yan, L Ling. Synchronization of N different coupled chaotic systems with ring and chain connections[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(10): 1299-1308.)
|
[13] |
Albert C J L, Fuhong M. Synchronization dynamics of two different dynamical systems[J]. Chaos Solitons Fractals, 2011,44(6): 362-380.
|
[14] |
Albert C J L. A theory for synchronization of dynamical systems[J]. Commun Nonlinear Sci Numer Simulat, 2009,14(5): 1901-1951.
|
[15] |
Habib D, Antonio L. Adaptive unknown-input observers-based synchronization of chaotic systems for telecommunication[J]. IEEE Trans Circuits Sys I Reg Papers, 2011, 58(4): 800-812.
|
[16] |
Olga I M, Alexey A K, Alexander E H. Generalized synchronization of chaos for secure communication: Remarkable stability to noise[J]. Phys Lett A, 2010, 374(29): 2925-2931.
|
[17] |
Wang X Y, He Y J, Wang M J. Chaos control of a fractional order modified coupled dynamos system[J]. Nonlinear Anal, 2009, 71(12): 6126-6134.
|
[18] |
Sachin B, Varsha D G. Synchronization of different fractional order chaotic systems using actice control[J]. Commun Nolinear Sci Numer Simulat, 2010,15(11): 3536-3546.
|
[19] |
Wu X J, Lu Y. Generalized projective synchronization of the fractional-order Chen hyperchaotic system[J]. Nonlinear Dyn, 2009,57(1/2): 25-35.
|
[20] |
Matouk A E. Chaos, feedback control and synchronization of a fractional-order modified Autonomous van der Pol-Duffing circuit[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(2): 975-986.
|
[21] |
Abel A, Schwarz W. Chaos communications-principles, schemes, and system analysis[J]. P IEEE, 2002, 90(5): 691-710.
|
[22] |
Hu N Q, Wen X S. The application of duffing oscillator in characteristic signal detection of early fault[J]. J Sound Vib, 2003, 268(5): 917-931.
|
[23] |
Nadakuditi R R, Silverstein J W. Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples[J]. IEEE Trans Ind Electron, 2010, 4(3): 468-480.
|
[24] |
Zhao Z, Wang F L, Jia M X, Wang S. Intermittent-chaos-and-cepstrum-analysis-based early fault detection on shuttle valve of hydraulic tube tester[J]. IEEE Trans Ind Electron, 2009, 56(7): 2764-2770.
|
[25] |
Diethelm K, Ford N J. Analysis of fractional differential equations[J]. J Math Anal Appl, 2002, 265(2): 229-248.
|
[26] |
Li C P, Zhang F R. A survey on the stability of fractional differential equations[J]. Eur Phys J Special Topics, 2011, 193(1): 27-47.
|
[27] |
Sabattier J, Moze M, Farges C. LMI stability conditions for fractional order system[J]. Comput Math Appl, 2010, 59(5): 1594-1609.
|
[28] |
Thavazoei M S, Haeri M. A note on the stability of fractional order system[J]. Math Comput Simul, 2009, 79(5): 1566-1576.
|
[29] |
Diethelm K, Ford N J. Multi-order fractional differential equations and their numerical solution[J]. Appl Math Comput, 2004, 154(3): 621-640.
|
[30] |
Diethelm K, Ford N J, Freed A D, Luchko Y. Algorithms for the fractional calculus:a selection of numerical method[J]. Comput Methods Appl Mech Engrg, 2005, 194(6/8): 743-773.
|