WANG Hua, Alatancang, HUANG Jun-jie. Completeness of the System of Root Vectors of Upper Triangular Infinite Dimensional Hamiltonian Operators Appearing in Elasticity Theory[J]. Applied Mathematics and Mechanics, 2012, 33(3): 366-378. doi: 10.3879/j.issn.1000-0887.2012.03.010
Citation: WANG Hua, Alatancang, HUANG Jun-jie. Completeness of the System of Root Vectors of Upper Triangular Infinite Dimensional Hamiltonian Operators Appearing in Elasticity Theory[J]. Applied Mathematics and Mechanics, 2012, 33(3): 366-378. doi: 10.3879/j.issn.1000-0887.2012.03.010

Completeness of the System of Root Vectors of Upper Triangular Infinite Dimensional Hamiltonian Operators Appearing in Elasticity Theory

doi: 10.3879/j.issn.1000-0887.2012.03.010
  • Received Date: 2011-05-04
  • Rev Recd Date: 2011-12-22
  • Publish Date: 2012-03-15
  • A class of upper triangular infinite dimensional Hamiltonian operators appearing in elasticity theory was dealt with. The geometric multiplicity and  algebraic index of the eigenvalue were investigated, then further the algebraic multiplicity of the eigenvalue was obtained. Based on these properties,the concrete completeness formulation of the system of eigen or root vectors of the Hamiltonian operator was proposed. It is shown that this completeness is determined by the system of eigenvectors of its operator entries. Finally, some illustrating applications from elasticity theory are presented.
  • loading
  • [1]
    钟万勰. 分离变量法与哈密尔顿体系[J].计算结构力学及其应用, 1991, 8(3): 229-239.(ZHONG Wan-xie.Method of separation of variables and Hamiltonian system[J]. Computational Structural Mechanics and Applications, 1991, 8(3): 229-239.(in Chinese))
    [2]
    钟万勰.弹性力学求解新体系[M].大连: 大连理工大学出版社, 1995.(ZHONG Wan-xie. A New Systematic Methodology for Theory of Elasticity[M].Dalian: Dalian University of Technology Press, 1995.(in Chinese))
    [3]
    Liu Y M, Li R.Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach [J].Applied Mathematical Modelling, 2010, 34(4): 856-865.
    [4]
    姚伟岸, 隋永枫. Reissner板弯曲的辛求解体系[J]. 应用数学和力学, 2004, 25(2): 159-165.(YAO Wei-an, SUI Yong-feng.Symplectic solution system for Reissner plate bending [J]. Applied Mathematics and Mechanics(English Edition), 2004, 25(2): 178-185.)
    [5]
    Zhou Z H, Wong K W, Xu X S, Leung A Y T. Natural vibration of circular and annular thin plates by Hamiltonian approach[J].Journal of Sound and Vibration, 2011, 330(5): 1005-1017.
    [6]
    Kurina G A.Invertibility of nonnegatively Hamiltonian operators in a Hilbert space[J]. Differential Equations, 2001, 37(6): 880-882.
    [7]
    Azizov T Ya, Dijksma A, Gridneva I V.On the boundedness of Hamiltonian operators[J].Proc American Math Soc, 2002, 131(2): 563-576.
    [8]
    Kurina G A, Martynenko G V.Reducibility of a class of operator functions to block-diagonal form[J]. Mathematical Notes, 2003, 74(5): 744-748.
    [9]
    阿拉坦仓, 黄俊杰, 范小英.L2×L2中一类无穷维Hamilton算子的剩余谱[J].数学物理学报, 2005, 25(7): 1040-1045.(Alatancang, HUANG Jun-jie, FAN Xiao-ying.The residual spectrum for a class of infinite dimensional Hamiltonian operators in L2×L2[J].Acta Mathematica Scientia, 2005, 25(7): 1040-1045.(in Chinese))
    [10]
    Alatancang, Huang J J, Fan X Y.Structure of the spectrum for infinite dimensional Hamiltonian operators[J]. Science in China Series A: Mathematics, 2008, 51(5): 915-924.
    [11]
    黄俊杰, 阿拉坦仓, 陈阿茹娜.一类无穷维Hamilton算子特征函数系的完备性[J].应用数学学报, 2008, 31(3): 457-466.(HUANG Jun-jie, Alatancang, CHEN A-ru-na.Completeness for the eigenfunction system of a class of infinite dimensional Hamiltonian operators[J].Acta Mathematicae Applicatae Sinica, Chinese Series, 2008, 31(3): 457-466.(in Chinese))
    [12]
    Wu D Y, Alatancang.Completeness in the sense of Cauchy principal value of the eigenfunction systems of infinite dimensional Hamiltonian operator[J].Science in China Series A: Mathematics, 2009, 52(1): 173-180.
    [13]
    王华, 阿拉坦仓, 黄俊杰.一类无穷维Hamilton算子根向量组的完备性[J].数学学报, 2011, 54(4): 541-552.(WANG Hua, Alatancang, HUANG Jun-jie.Completeness of root vector systems of a class of infinite-dimensional Hamiltonian operators[J].Acta Mathematica Sinica, Chinese Series, 2011, 54(4): 541-552.(in Chinese))
    [14]
    Huang J J, Alatancang, Wang H.Completeness of the system of eigenvectors of off-diagonal operator matrices and its applications in elasticity theory [J]. Chinese Physics B, 2010, 19(12): 120201.
    [15]
    Taylor A E .Theorems on ascent, descent, nullity and defect of linear operators [J]. Math Ann, 1966, 163: 18-49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1549) PDF downloads(918) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return