XU Run-zhang, JIANG Xiao-li, LIU Jie. Uniform Blow-Up Rate for a Compressible Reactive Gas Model[J]. Applied Mathematics and Mechanics, 2012, 33(1): 125-134. doi: 10.3879/j.issn.1000-0887.2012.01.010
Citation: XU Run-zhang, JIANG Xiao-li, LIU Jie. Uniform Blow-Up Rate for a Compressible Reactive Gas Model[J]. Applied Mathematics and Mechanics, 2012, 33(1): 125-134. doi: 10.3879/j.issn.1000-0887.2012.01.010

Uniform Blow-Up Rate for a Compressible Reactive Gas Model

doi: 10.3879/j.issn.1000-0887.2012.01.010
  • Received Date: 2011-05-30
  • Rev Recd Date: 2011-11-03
  • Publish Date: 2012-01-15
  • The Dirichlet initial-boundary value problem of a compressible reactive gas model equation with nonlocal nonlinear source term was studied. For certain conditions, it is proved that the blow-up rate is uniform in all compact subsets of the domain and the blow-up rate is irrelative to the exponent of the diffusion term, but relative to the exponent of the nonlocal nonlinear source.
  • loading
  • [1]
    Souplet P. Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonliear source[J].Journal of Differential Equations, 1999, 153(2): 374-406.
    [2]
    Bebernes J, Bressan A, Lacey A. Total blow-up versus single point blow-up[J].J Differential Equations, 1988, 73(1): 30-44.
    [3]
    Bricher S. Total versus single point blow-up for a nonlocal gaseous ignition model[J].J Math, Rocky Mountain, 2002, 32(1): 25-43.
    [4]
    Pao C V. Nonexistence of global solutions for an integrodifferential system in reactor dynamics[J].SIAM J Math Anal, 1980, 11(3): 559-564.
    [5]
    Guo J S, Su H W. The blow-up behaviour of the solution of an integrodifferential equation[J].Differential Integral Equations, 1992, 5(6): 1237-1245.
    [6]
    Souplet P. Blow up in nonlocal reaction-diffusion equations[J].SIAM J Math Anal, 1998, 29(6): 1301-1334.
    [7]
    Duan Z W, Deng W B, Xie C H. Uniform blow-up profile for a degenerate parabolic system with nonlocal source[J]. Computers and Mathmatics With Applications, 2004, 47(6/7): 977-995.
    [8]
    Furter J, Grinfeld M. Local vs non-local interactions in polulation dynamics[J].Journal of Mathematical Biology, 1989, 27(1): 65-80.
    [9]
    Chadam J M, Peirce A, Yin H M. The blow up property of solutions to some diffusion equations with localized nonlinear reactions[J]. Journal of Mathematical Analysis and Application, 1992, 169(2): 313-328.
    [10]
    Deng W, Li Y, Xie C. Existence and nonexistence of global solution of some nonlocal degenerate parabolic equations[J].Applied Mathematics Letters, 2003, 16(5): 803-808.
    [11]
    Rouchon P. Universal bounds for global solutions of a diffusion equation with a nonlocal reaction term[J].Journal of Differential Equations, 2003, 193(1): 75-94.
    [12]
    Li F, Xie C. Global existence and blow-up for a nonlinear porous medium equation[J].Appl Math Lett, 2003, 16(2): 185-192.
    [13]
    Liu Q L, Li Y X, Gao H J. Uniform blow-up rate for diffusion equations with nonlocal nonlinear source[J]. Nonlinear Analysis, 2007, 67(6): 1947-1957.
    [14]
    Liu Q L, Li Y X, Gao H J. Uniform blow-up rate for a nonlocal degenerate parabolic equations[J].Nonlinear Analysis, 2007, 66(4): 881-889.
    [15]
    Cui Z J, Yang Z D. Roles of weight funcions to a nonlinear porous medium equation with nonlocal source and nonlocal boundary condition[J].Journal of Mathematical Analysis and Applications, 2008, 342(1): 559-570.
    [16]
    Jiang Z X, Zheng S N, Song X F. Blow-up analysis for a nonlinear diffusion equation with nonlinear boundary conditions[J]. Applied Mathematics Letters, 2004, 17(2): 193-199.
    [17]
    Wang Y L, Mu C L, Xiang Z Y. Blow-up of solutions to a porous medium equation with nonlocal boundary condition[J]. Applied Mathematics and Computation, 2007, 192(2): 579-585.
    [18]
    Zhou J, Mu C L, Lu F. Blow-up and global existence to a degenerate reaction-diffusion equation with nonlinear memory[J]. Journal of Mathmatical Analysis and Applications, 2007, 333(2): 1128-1152.
    [19]
    Kong L H, Wang J H, Zheng S N. Asymptotic analysis to a parabolic equation with a weighted localized source[J].Applied Mathematics and Computation, 2008, 197(2): 819-827.
    [20]
    Guo J S, Hu B. Blowup rate for heat equation in Lipschitz domains with nonlinear heat source terms on the boundary[J]. Journal of Mathmatical Analysis and Applications, 2002, 269(1): 28-49.
    [21]
    Anderson J R, Deng K. Global existence for degenerate paralic equations with non-local forcing[J].Math Methods Appl Sci, 1997, 20(13): 1069-1087.
    [22]
    Friedman A, Mcleod B. Blow-up of positive solutions of semilinear heat equations[J].Indiana Univ Math J, 1985, 34(2): 425-447.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1814) PDF downloads(1027) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return