Citation: | YAN Jian-ping, GUO Ben-yu. Laguerre-Gauss Collocation Method for Initial Values Problems of Second Order ODEs[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1439-1460. doi: 10.3879/j.issn.1000-0887.2011.12.005 |
[1] |
Coleman J P, Duxbury S C. Mixed collocation methods for y″=f(t,y)[J].J Comp Appl Math, 2000, 126(1/2): 47-75. doi: 10.1016/S0377-0427(99)00340-4
|
[2] |
Gautschi W. Numerical integration of ordinary differential equationsbased on trigonometric polynomials[J].Numer Math, 1961, 3(1): 381-397. doi: 10.1007/BF01386037
|
[3] |
Lambert J D, Watson I A. Symmetric multistepmethods for periodic initial value problems[J]. J Inst Math Appl, 1976, 18(2): 189-202. doi: 10.1093/imamat/18.2.189
|
[4] |
Simos T E. Exponentially-fitted Runge-Kutta-Nystrm method for the numerical solution ofinitial value problems with oscillating solution[J]. Appl Math Lett, 2002, 15(2): 217-225. doi: 10.1016/S0893-9659(01)00121-5
|
[5] |
Cash JR.High order P-stable formulae for the numerical integration of periodic initial value problems[J].Numer Math, 1981, 37(3): 55-370.
|
[6] |
Chawla MM,Rao PS. High-accuracy P-stable methods for y″=f(t,y)[J].IMA J of Numer Anal, 1985, 5(2): 5-220.
|
[7] |
Daele MVan, Hecke H De, Meyer HDe, Rerghe G V. On aclass of P-stable mono-implict Runge-Kutta-Nystrm methods[J].Appl Numer Math, 1998, 27(1): 69-82. doi: 10.1016/S0168-9274(97)00110-4
|
[8] |
Franco J M, Palacios M. High order P-stable multistepmethods[J]. J Comp Appl Math,1990,30(1): 1-10. doi: 10.1016/0377-0427(90)90001-G
|
[9] |
Hairer E. Unconditionally stable methods for second order differential equations[J]. Numer Math, 1979, 32(4): 373-379. doi: 10.1007/BF01401041
|
[10] |
Pagageorigiou G, FamelisTh, Tsitouras Ch. A P-stablesinglydiagonally implicit Runge-Kutta-Nystrm method[J].Numer Algo, 1998, 17(3): 345-353. doi: 10.1023/A:1016644726305
|
[11] |
DormandJ R, El-Mikkawy M E A, Prince P J.High-orderembedded Rung-Kutta-Nystrm formulae[J].IMAJ of Numer Anal, 1987, 7(4): 423-430. doi: 10.1093/imanum/7.4.423
|
[12] |
Franco J M, Gomez I, Rander L. Four-stagesymplectic and P-stable SDIRKN methods with dispersion of highorder[J].Numer Algor, 2001, 26(4): 347-363. doi: 10.1023/A:1016629706668
|
[13] |
Hairer E, Wanner G. A theory for Nystrm methods[J].Numer Math, 1976, 25(4): 383-400.
|
[14] |
Houwen P J Van der, Sommeijer B P. Diagonallyimplicit Runge-Kutta-Nystrm methods with reduced phase-errorsfor computing oscillating solutions[J].SIAM J Numer Anal,1989, 26(2): 414-429. doi: 10.1137/0726023
|
[15] |
Meyer H De, Hecke M Van, Berghe G Vander.On the generation of mono-implicit Runge-Kutta-Nystrm methods by mono-implicit Runge-Kutta methods[J].J Comp Appl Math, 1997, 87(1): 147-167. doi: 10.1016/S0377-0427(97)00183-0
|
[16] |
Vigo-Aguiar J, Ramos H. Variable stepsizeimplementation of multistep methods for y″=f(t,y,y′)[J]. J Comp Appl Math, 2006, 192(1): 114-131. doi: 10.1016/j.cam.2005.04.043
|
[17] |
Houwen P J Van der, Sommeijer B P, Cong N H. Stabilityof collocation-based Runge-Kutta-Nystrm methods[J]. BIT, 1991, 31(2): 469-481. doi: 10.1007/BF01933263
|
[18] |
Kramarz L. Stability of collocation methods for the numericalsolution of y″=f(t,y)[J]. BIT,1980,20(2): 215-222. doi: 10.1007/BF01933194
|
[19] |
GUO Ben-yu, WANG Zhong-qing. Legendre-Gauss collocation methods for ordinary differential equations[J].Adv in Comp Math, 2009, 30(3): 249-280. doi: 10.1007/s10444-008-9067-6
|
[20] |
GUO Ben-yu, WANG Zhong-qing. Numerical integration based on Laguerre-Gaussinterpolation[J]. Comput Meth in Appl Mech Engrg, 2007, 196(37/40): 3726-3741. doi: 10.1016/j.cma.2006.10.035
|
[21] |
GUO Ben-yu, WANG Zhong-qing. A spectral collocation method for solving initial value problems of first order ordinary differential equations[J].Disc Conti Dyna Syst B, 2010, 14(3): 1029-1054. doi: 10.3934/dcdsb.2010.14.1029
|
[22] |
GUO Ben-yu, WANG Zhong-qing, TIAN Hong-jiong, WANG Li-lian. Integration processes of ordinary differential equations based onLaguerre-Gauss interpolations[J]. Math Comp, 2008, 77(261): 181-199. doi: 10.1090/S0025-5718-07-02035-2
|
[23] |
GUO Ben-yu, YAN Jian-ping. Legendre-Gauss collocation methods for initial valueproblems of second order ordinary differential equations[J]. Appl Numer Math, 2009, 59(6): 386-1408.
|
[24] |
GUO Ben-yu, ZHANG Xiao-yong. A new generalized Laguerre approximation and its applications[J].J Comp Appl Math, 2005, 181(2): 342-363. doi: 10.1016/j.cam.2004.12.008
|
[25] |
GUO Ben-Yu, WANG Li-Lian,WANG Zhong-qing. Generalized Laguerre interpolation and pseudospectral methodfor unbounded domains[J]. SIAM J on Numer Anal, 2006, 43(6): 2567-2589. doi: 10.1137/04061324X
|
[26] |
Fehlberg E. Classical eight and lower-order Runge-Kutta-Nystrmformulae with stepsize control for special second order differentialequations[C]NASA Technical Report, NASA TR, Washington, 1972, R-381.
|
[27] |
Simos T E, Vigo-Aguiar J.A new modifiedRunge-Kutta-Nystrm method with phase-lag of order infinity forthe numerical solution of the Schrdinger equation and relatedproblems[J]. Inter J of Modern Phys C, 2000, 11(6):1195-1208. doi: 10.1142/S0129183100001036
|
[28] |
Franco J M. Runge-Kutta-Nystrm method adapted to the numericalintegration of perturbed oscillators[J]. Comp Phys Comm, 2002, 147(3): 770-787. doi: 10.1016/S0010-4655(02)00460-5
|
[29] |
Simos T E, Vigo-Aguiar J. On the construction of efficient methods for second order IVPs with oscillating solution[J]. Inter J of Modern Phys C, 2001, 12(10):1453-1476. doi: 10.1142/S0129183101002826
|
[30] |
Franco J M, Gonzlez L A B, Martín P. An algorithm for the systematic construction of solutions to perturbed problems[J].Comp Phys Comm, 1998, 111(1/3): 110-132. doi: 10.1016/S0010-4655(98)00037-X
|
[31] |
YAN Jian-ping, GUO Ben-yu. A collocation method for initial value problems of second-order ODEs by using Laguerre functions[J]. Numer Math Theo Meth Appl, 2011, 4(2): 282-294.
|