YAN Jian-ping, GUO Ben-yu. Laguerre-Gauss Collocation Method for Initial Values Problems of Second Order ODEs[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1439-1460. doi: 10.3879/j.issn.1000-0887.2011.12.005
Citation: YAN Jian-ping, GUO Ben-yu. Laguerre-Gauss Collocation Method for Initial Values Problems of Second Order ODEs[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1439-1460. doi: 10.3879/j.issn.1000-0887.2011.12.005

Laguerre-Gauss Collocation Method for Initial Values Problems of Second Order ODEs

doi: 10.3879/j.issn.1000-0887.2011.12.005
  • Received Date: 2011-08-17
  • Rev Recd Date: 2011-09-26
  • Publish Date: 2011-12-15
  • Numerical method for initial value problems of second order ordinary differential equations was investigated. The new collocation method based on the Laguerre-Gauss interpolation was designed, which was very easy to be carried out, especially for nonlinear problems. The convergence was analyzed for two different cases, and the spectral accuracy was proved by using the recent results on the LaguerreGauss interpolation. A multi-step collocation method was also provided, which simplified actual computation and still kept the same spectral accuracy. The numerical results are presented, demonstrating the high accuracy of suggested algorithms.
  • loading
  • [1]
    Coleman J P, Duxbury S C. Mixed collocation methods for y″=f(t,y)[J].J Comp Appl Math, 2000, 126(1/2): 47-75. doi: 10.1016/S0377-0427(99)00340-4
    [2]
    Gautschi W. Numerical integration of ordinary differential equationsbased on trigonometric polynomials[J].Numer Math, 1961, 3(1): 381-397. doi: 10.1007/BF01386037
    [3]
    Lambert J D, Watson I A. Symmetric multistepmethods for periodic initial value problems[J]. J Inst Math Appl, 1976, 18(2): 189-202. doi: 10.1093/imamat/18.2.189
    [4]
    Simos T E. Exponentially-fitted Runge-Kutta-Nystrm method for the numerical solution ofinitial value problems with oscillating solution[J]. Appl Math Lett, 2002, 15(2): 217-225. doi: 10.1016/S0893-9659(01)00121-5
    [5]
    Cash JR.High order P-stable formulae for the numerical integration of periodic initial value problems[J].Numer Math, 1981, 37(3): 55-370.
    [6]
    Chawla MM,Rao PS. High-accuracy P-stable methods for y″=f(t,y)[J].IMA J of Numer Anal, 1985, 5(2): 5-220.
    [7]
    Daele MVan, Hecke H De, Meyer HDe, Rerghe G V. On aclass of P-stable mono-implict Runge-Kutta-Nystrm methods[J].Appl Numer Math, 1998, 27(1): 69-82. doi: 10.1016/S0168-9274(97)00110-4
    [8]
    Franco J M, Palacios M. High order P-stable multistepmethods[J]. J Comp Appl Math,1990,30(1): 1-10. doi: 10.1016/0377-0427(90)90001-G
    [9]
    Hairer E. Unconditionally stable methods for second order differential equations[J]. Numer Math, 1979, 32(4): 373-379. doi: 10.1007/BF01401041
    [10]
    Pagageorigiou G, FamelisTh, Tsitouras Ch. A P-stablesinglydiagonally implicit Runge-Kutta-Nystrm method[J].Numer Algo, 1998, 17(3): 345-353. doi: 10.1023/A:1016644726305
    [11]
    DormandJ R, El-Mikkawy M E A, Prince P J.High-orderembedded Rung-Kutta-Nystrm formulae[J].IMAJ of Numer Anal, 1987, 7(4): 423-430. doi: 10.1093/imanum/7.4.423
    [12]
    Franco J M, Gomez I, Rander L. Four-stagesymplectic and P-stable SDIRKN methods with dispersion of highorder[J].Numer Algor, 2001, 26(4): 347-363. doi: 10.1023/A:1016629706668
    [13]
    Hairer E, Wanner G. A theory for Nystrm methods[J].Numer Math, 1976, 25(4): 383-400.
    [14]
    Houwen P J Van der, Sommeijer B P. Diagonallyimplicit Runge-Kutta-Nystrm methods with reduced phase-errorsfor computing oscillating solutions[J].SIAM J Numer Anal,1989, 26(2): 414-429. doi: 10.1137/0726023
    [15]
    Meyer H De, Hecke M Van, Berghe G Vander.On the generation of mono-implicit Runge-Kutta-Nystrm methods by mono-implicit Runge-Kutta methods[J].J Comp Appl Math, 1997, 87(1): 147-167. doi: 10.1016/S0377-0427(97)00183-0
    [16]
    Vigo-Aguiar J, Ramos H. Variable stepsizeimplementation of multistep methods for y″=f(t,y,y′)[J]. J Comp Appl Math, 2006, 192(1): 114-131. doi: 10.1016/j.cam.2005.04.043
    [17]
    Houwen P J Van der, Sommeijer B P, Cong N H. Stabilityof collocation-based Runge-Kutta-Nystrm methods[J]. BIT, 1991, 31(2): 469-481. doi: 10.1007/BF01933263
    [18]
    Kramarz L. Stability of collocation methods for the numericalsolution of y″=f(t,y)[J]. BIT,1980,20(2): 215-222. doi: 10.1007/BF01933194
    [19]
    GUO Ben-yu, WANG Zhong-qing. Legendre-Gauss collocation methods for ordinary differential equations[J].Adv in Comp Math, 2009, 30(3): 249-280. doi: 10.1007/s10444-008-9067-6
    [20]
    GUO Ben-yu, WANG Zhong-qing. Numerical integration based on Laguerre-Gaussinterpolation[J]. Comput Meth in Appl Mech Engrg, 2007, 196(37/40): 3726-3741. doi: 10.1016/j.cma.2006.10.035
    [21]
    GUO Ben-yu, WANG Zhong-qing. A spectral collocation method for solving initial value problems of first order ordinary differential equations[J].Disc Conti Dyna Syst B, 2010, 14(3): 1029-1054. doi: 10.3934/dcdsb.2010.14.1029
    [22]
    GUO Ben-yu, WANG Zhong-qing, TIAN Hong-jiong, WANG Li-lian. Integration processes of ordinary differential equations based onLaguerre-Gauss interpolations[J]. Math Comp, 2008, 77(261): 181-199. doi: 10.1090/S0025-5718-07-02035-2
    [23]
    GUO Ben-yu, YAN Jian-ping. Legendre-Gauss collocation methods for initial valueproblems of second order ordinary differential equations[J]. Appl Numer Math, 2009, 59(6): 386-1408.
    [24]
    GUO Ben-yu, ZHANG Xiao-yong. A new generalized Laguerre approximation and its applications[J].J Comp Appl Math, 2005, 181(2): 342-363. doi: 10.1016/j.cam.2004.12.008
    [25]
    GUO Ben-Yu, WANG Li-Lian,WANG Zhong-qing. Generalized Laguerre interpolation and pseudospectral methodfor unbounded domains[J]. SIAM J on Numer Anal, 2006, 43(6): 2567-2589. doi: 10.1137/04061324X
    [26]
    Fehlberg E. Classical eight and lower-order Runge-Kutta-Nystrmformulae with stepsize control for special second order differentialequations[C]NASA Technical Report, NASA TR, Washington, 1972, R-381.
    [27]
    Simos T E, Vigo-Aguiar J.A new modifiedRunge-Kutta-Nystrm method with phase-lag of order infinity forthe numerical solution of the Schrdinger equation and relatedproblems[J]. Inter J of Modern Phys C, 2000, 11(6):1195-1208. doi: 10.1142/S0129183100001036
    [28]
    Franco J M. Runge-Kutta-Nystrm method adapted to the numericalintegration of perturbed oscillators[J]. Comp Phys Comm, 2002, 147(3): 770-787. doi: 10.1016/S0010-4655(02)00460-5
    [29]
    Simos T E, Vigo-Aguiar J. On the construction of efficient methods for second order IVPs with oscillating solution[J]. Inter J of Modern Phys C, 2001, 12(10):1453-1476. doi: 10.1142/S0129183101002826
    [30]
    Franco J M, Gonzlez L A B, Martín P. An algorithm for the systematic construction of solutions to perturbed problems[J].Comp Phys Comm, 1998, 111(1/3): 110-132. doi: 10.1016/S0010-4655(98)00037-X
    [31]
    YAN Jian-ping, GUO Ben-yu. A collocation method for initial value problems of second-order ODEs by using Laguerre functions[J]. Numer Math Theo Meth Appl, 2011, 4(2): 282-294.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1925) PDF downloads(867) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return