DENG Ming-xiang, FENG Yong-ping. Two-Scale Finite Element Method for Piezoelectric Problem in Periodic Structure[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1424-1438. doi: 10.3879/j.issn.1000-0887.2011.12.004
Citation: DENG Ming-xiang, FENG Yong-ping. Two-Scale Finite Element Method for Piezoelectric Problem in Periodic Structure[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1424-1438. doi: 10.3879/j.issn.1000-0887.2011.12.004

Two-Scale Finite Element Method for Piezoelectric Problem in Periodic Structure

doi: 10.3879/j.issn.1000-0887.2011.12.004
  • Received Date: 2011-02-21
  • Rev Recd Date: 2011-09-28
  • Publish Date: 2011-12-15
  • The prediction of the mechanical and electric properties of piezoelectric fibre composites had become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element method for solutions of the electric potential and the displacement for composite material in periodic structure under coupled piezoelectricity were derived. The coupled twoscale relation of the electric potential and the displacement was set up. And some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.
  • loading
  • [1]
    Telega J J. Piezoelectricity and homogenization: application to biomechanics[C]Maugin G A. Continuum Models and Discrete Systems, Vol 2. London: Longman,1991: 220-229.
    [2]
    Smith W A, Auld B A. Modeling 1-3 composite piezoelectrics:thickness-mode oscillations[J]. IEEE Trans Ultrason Ferr, 1991, 38(1): 40-47. doi: 10.1109/58.67833
    [3]
    Odegard G M. Constitutive modeling of piezoelectric polymer composites[J]. Acta Materialia, 2004, 52(18): 5315-5330. doi: 10.1016/j.actamat.2004.07.037
    [4]
    Gomez Alvarez-Arenas T E, Espinosa F M. Highly coupled dielectric behavior of porous ceramics embedding a polymer[J]. Appl Phys Lett, 1996, 68(2): 263-265. doi: 10.1063/1.115657
    [5]
    Gomez Alvarez-Arenas T E, Freijo F M. New constitutive relations for piezoelectric composites and porous piezoelectric ceramics[J]. J Acoust Soc Amer, 1996, 100(5): 3104-3114. doi: 10.1121/1.417122
    [6]
    Gomez Alvarez-Arenas T E, Espinosa F M. Characterization of porous piezoelectric ceramics: the length expander case[J]. J Acoust Soc Amer, 1997, 102(6): 3507-3515. doi: 10.1121/1.420143
    [7]
    Zheng Q S, Du D X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(11): 2765-2788. doi: 10.1016/S0022-5096(01)00078-3
    [8]
    Ramesh R, Kara H, Bowen C R. Finite element modelling of dense and porous piezoceramic disc hydrophones[J]. Ultrasonics, 2005, 43(3): 173-181. doi: 10.1016/j.ultras.2004.05.001
    [9]
    FANG Dai-ning, MAO Guan-zhong, LI Fa-xin, FENG Xue, WANG Yong- ping, LI Chang-qing, JIANG Bing, LIU Bin, BING Qi-da. Experimental study on electro-magneto-mechanical coupling behavior of smart materials[J]. Journal of Mechanical Strength, 2005, 27(2): 217-226.
    [10]
    Yamaguchi M, Hashimoto K Y, Makita H. Finite element method analysis of dispersion characteristics for 1-3 type piezoelectric composite[C]Proc IEEE Ultrasonic Symposium, 1987: 657-661.
    [11]
    Ballandras S, Pierre G, Blanc F A. Periodic finite element formulation for the design of 2-2 composite transducers[C]Proc IEEE Ultrasonic Symposium, 1999: 957-960.
    [12]
    Qi W K, Cao W W. Finite element analysis of periocdic and random 2-2 piezocomposite transducers with finite dimensions[J]. IEEE Trans UFFC, 1997, 44: 1168-1171. doi: 10.1109/58.655642
    [13]
    Cui J Z, Shin T M, Wang Y L. The two-scale analysis method for the bodies with small periodic configurations[J]. Struct Ens Mech, 1999,7(6): 601-614.
    [14]
    Cao L Q. Multiscale asymptotic expansion and finite element methods for the mixed boundary value problems of second order elliptic equation in perforated domains[J]. Numer Math, 2006, 103(1): 11-45. doi: 10.1007/s00211-005-0668-4
    [15]
    Yang J S, Batra R C. Conservation laws in linear piezoelectricity[J]. Engineering Fracture Mech, 2005, 51(6):1041-1047.
    [16]
    Gautschi G. Piezoelectric Sensorics[M]. Berlin: Springer, 2002: 50.
    [17]
    Zhang F X. Modern Piezoelectricity[M]. Beijing: Science Press, 2001: 20.
    [18]
    Oleinik O A, Shamaev A S, Yosifian G A. Mathematical Problems in Elasticity and Homogenization[M]. Amsterdan: North-Holland, 1992: 96.
    [19]
    Feng Y P, Cui J Z. Multi-scale FE computation for the structure of composite materials with small period configuration under condition of coupled thermoelasticity[J]. Acta Mechanica Sinica, 2004, 20(1): 54-63.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1846) PDF downloads(766) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return