Citation: | DENG Ming-xiang, FENG Yong-ping. Two-Scale Finite Element Method for Piezoelectric Problem in Periodic Structure[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1424-1438. doi: 10.3879/j.issn.1000-0887.2011.12.004 |
[1] |
Telega J J. Piezoelectricity and homogenization: application to biomechanics[C]Maugin G A. Continuum Models and Discrete Systems, Vol 2. London: Longman,1991: 220-229.
|
[2] |
Smith W A, Auld B A. Modeling 1-3 composite piezoelectrics:thickness-mode oscillations[J]. IEEE Trans Ultrason Ferr, 1991, 38(1): 40-47. doi: 10.1109/58.67833
|
[3] |
Odegard G M. Constitutive modeling of piezoelectric polymer composites[J]. Acta Materialia, 2004, 52(18): 5315-5330. doi: 10.1016/j.actamat.2004.07.037
|
[4] |
Gomez Alvarez-Arenas T E, Espinosa F M. Highly coupled dielectric behavior of porous ceramics embedding a polymer[J]. Appl Phys Lett, 1996, 68(2): 263-265. doi: 10.1063/1.115657
|
[5] |
Gomez Alvarez-Arenas T E, Freijo F M. New constitutive relations for piezoelectric composites and porous piezoelectric ceramics[J]. J Acoust Soc Amer, 1996, 100(5): 3104-3114. doi: 10.1121/1.417122
|
[6] |
Gomez Alvarez-Arenas T E, Espinosa F M. Characterization of porous piezoelectric ceramics: the length expander case[J]. J Acoust Soc Amer, 1997, 102(6): 3507-3515. doi: 10.1121/1.420143
|
[7] |
Zheng Q S, Du D X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(11): 2765-2788. doi: 10.1016/S0022-5096(01)00078-3
|
[8] |
Ramesh R, Kara H, Bowen C R. Finite element modelling of dense and porous piezoceramic disc hydrophones[J]. Ultrasonics, 2005, 43(3): 173-181. doi: 10.1016/j.ultras.2004.05.001
|
[9] |
FANG Dai-ning, MAO Guan-zhong, LI Fa-xin, FENG Xue, WANG Yong- ping, LI Chang-qing, JIANG Bing, LIU Bin, BING Qi-da. Experimental study on electro-magneto-mechanical coupling behavior of smart materials[J]. Journal of Mechanical Strength, 2005, 27(2): 217-226.
|
[10] |
Yamaguchi M, Hashimoto K Y, Makita H. Finite element method analysis of dispersion characteristics for 1-3 type piezoelectric composite[C]Proc IEEE Ultrasonic Symposium, 1987: 657-661.
|
[11] |
Ballandras S, Pierre G, Blanc F A. Periodic finite element formulation for the design of 2-2 composite transducers[C]Proc IEEE Ultrasonic Symposium, 1999: 957-960.
|
[12] |
Qi W K, Cao W W. Finite element analysis of periocdic and random 2-2 piezocomposite transducers with finite dimensions[J]. IEEE Trans UFFC, 1997, 44: 1168-1171. doi: 10.1109/58.655642
|
[13] |
Cui J Z, Shin T M, Wang Y L. The two-scale analysis method for the bodies with small periodic configurations[J]. Struct Ens Mech, 1999,7(6): 601-614.
|
[14] |
Cao L Q. Multiscale asymptotic expansion and finite element methods for the mixed boundary value problems of second order elliptic equation in perforated domains[J]. Numer Math, 2006, 103(1): 11-45. doi: 10.1007/s00211-005-0668-4
|
[15] |
Yang J S, Batra R C. Conservation laws in linear piezoelectricity[J]. Engineering Fracture Mech, 2005, 51(6):1041-1047.
|
[16] |
Gautschi G. Piezoelectric Sensorics[M]. Berlin: Springer, 2002: 50.
|
[17] |
Zhang F X. Modern Piezoelectricity[M]. Beijing: Science Press, 2001: 20.
|
[18] |
Oleinik O A, Shamaev A S, Yosifian G A. Mathematical Problems in Elasticity and Homogenization[M]. Amsterdan: North-Holland, 1992: 96.
|
[19] |
Feng Y P, Cui J Z. Multi-scale FE computation for the structure of composite materials with small period configuration under condition of coupled thermoelasticity[J]. Acta Mechanica Sinica, 2004, 20(1): 54-63.
|