LUO Zhi-qiang, CHEN Zhi-min. Sloshing Simulation of Standing Wave With a Time-Independent Finite Difference Method for Euler Equations[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1378-1390. doi: 10.3879/j.issn.1000-0887.2011.11.011
Citation: LUO Zhi-qiang, CHEN Zhi-min. Sloshing Simulation of Standing Wave With a Time-Independent Finite Difference Method for Euler Equations[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1378-1390. doi: 10.3879/j.issn.1000-0887.2011.11.011

Sloshing Simulation of Standing Wave With a Time-Independent Finite Difference Method for Euler Equations

doi: 10.3879/j.issn.1000-0887.2011.11.011
  • Received Date: 2010-12-20
  • Rev Recd Date: 2011-09-05
  • Publish Date: 2011-11-15
  • The numerical solutions of standing wave for Euler equations with nonlinear free surface boundary condition in a two dimensional tank were solved.The irregular tank was mapped onto a fixed square domain through proper mapping functions and a staggered mesh system was employed in a two dimensional tank in order to calculate the elevation of the transient fluid.A time-independent finite difference method, which was developed by Bang-fuh Chen,was applied and was used to solve Euler equations for incompressible and inviscid fluid.The numerical solutions agree well with analytic solutions and previously published results.The nonlinear and beating phenomena are very clear and the sloshing of surge and heave motions with initial standing wave are presented.
  • loading
  • [1]
    Abramson H N. The dynamic behavior of liquids in moving containers[R]. SP-106, Washington D C: National Aeronautics and Space Administration, 1966.
    [2]
    Miles J W. Nonlinear surface waves in closed basins[J]. Journal of Fluid Mechanics, 1976, 75(3): 419-448. doi: 10.1017/S002211207600030X
    [3]
    Miles J W. Internally resonant surface waves in a circular cylinder[J]. Journal of Fluid Mechanics, 1984, 149(12): 1-14. doi: 10.1017/S0022112084002500
    [4]
    Miles J W. Resonantly forced surface waves in a circular cylinder[J]. Journal of Fluid Mechanics, 1984, 149(12): 15-31. doi: 10.1017/S0022112084002512
    [5]
    Hutton R E. An investigation of resonant nonlinear nonplannar free surface oscillations of a fluid[R]. Washington D C: National Aeronautics and Space Administration, 1963.
    [6]
    Faltisen O M. A nonlinear theory of sloshing in rectangular tanks[J]. Journal of Ship Research, 1974, 18(4): 224-241.
    [7]
    Waterhouse D D. Resonant sloshing near a critical depth[J]. Journal of Fluid Mechanics, 1994, 281(12): 313-318. doi: 10.1017/S0022112094003125
    [8]
    Faltisen O M. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth[J]. Journal of Fluid Mechanics, 2000, 407(3): 201-234. doi: 10.1017/S0022112099007569
    [9]
    Whitham G B. Nonlinear dispersion of water waves[J]. Journal of Fluid Mechanics, 1967, 27: 399-412. doi: 10.1017/S0022112067000424
    [10]
    Balk A M. A Lagrangian for water waves[J]. Physics of Fluids, 1996, 8(2): 416-420. doi: 10.1063/1.868795
    [11]
    La Rocca M, Mele P, Armenio V. Variational approach to the problem of sloshing in a moving container[J]. Journal of Theoretical and Applied Fluid Mechanics, 1997, 1(4): 280-310.
    [12]
    Sirovich L. New Perspectives in Turbulence[M]. Berlin: Springer, 1991.
    [13]
    Sriram V, Sannasiraj S A, Sundar V. Numerical simulation of 2D sloshing waves due to horizontal and vertical random excitation[J]. Applied Ocean Research, 2006, 28(1): 19-32. doi: 10.1016/j.apor.2006.01.002
    [14]
    Frandsen J B. Numerical bridge deck studies using finite elements. part Ⅰ: flutter[J]. Journal of Fluids and Structures, 2004, 19(2): 171-191. doi: 10.1016/j.jfluidstructs.2003.12.005
    [15]
    Lin P Z. A gixed-grid model for simulation of a moving body in free surface flows[J]. Computers & Fluids, 2007, 36(3): 549-561.
    [16]
    Lhner R, Yang C, On··ate E. On the simulation of flows with violent free surface motion[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41/43): 5597-5620. doi: 10.1016/j.cma.2005.11.010
    [17]
    Chen Y H, Hwang W S, Hao C. Numerical simulation of the three-dimensional sloshing problem by boundary element method[J]. Journal of the Chinese Institute of Engineers, 2000, 23(3): 321-330. doi: 10.1080/02533839.2000.9670552
    [18]
    Chen B F. Nonlinear hydrodynamic pressures by earthquakes on dam face with arbitrary reservoir shapes[J]. Journal of Hydraulic Research, 1994, 32(30): 401-413. doi: 10.1080/00221689409498742
    [19]
    Chen B F, Nokes R. Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank[J]. Journal of Computational Physics, 2005, 209(1): 47-81. doi: 10.1016/j.jcp.2005.03.006
    [20]
    Chen B F. Viscous fluid in a tank under coupled surge, heave and pitch motions[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2005, 131(5): 239-256. doi: 10.1061/(ASCE)0733-950X(2005)131:5(239)
    [21]
    Wu C H, Chen B F. Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method[J]. Ocean Engineering, 2009, 36(6): 500-510. doi: 10.1016/j.oceaneng.2009.01.020
    [22]
    Lapidus L, Pinder G F. Numerical Solution of Partial Differential Equations in Science and Engineering[M]. New York: John Wiley and Sons, 1982.
    [23]
    Hoffman J D. Numerical Methods for Engineers and Scientists[M]. New York: McGraw-Hill Inc, 1993.
    [24]
    Nakayama T, Washizu K. The boundary element method applied to the analysis of two dimensional nonlinear sloshing problems[J]. International Journal for Numerical Methods in Engineering, 1981, 17(11): 1631-1646. doi: 10.1002/nme.1620171105
    [25]
    Wu G X. Second order resonance of sloshing in a tank[J]. Ocean Engineering, 2007, 34(17/18): 2345-2349. doi: 10.1016/j.oceaneng.2007.05.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1852) PDF downloads(850) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return