HE Ming-hua, XIN Ke-gui. Separation Work Analysis of Cohesive Law and Consistently Coupled Cohesive Law[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1342-1351. doi: 10.3879/j.issn.1000-0887.2011.11.008
Citation: HE Ming-hua, XIN Ke-gui. Separation Work Analysis of Cohesive Law and Consistently Coupled Cohesive Law[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1342-1351. doi: 10.3879/j.issn.1000-0887.2011.11.008

Separation Work Analysis of Cohesive Law and Consistently Coupled Cohesive Law

doi: 10.3879/j.issn.1000-0887.2011.11.008
  • Received Date: 2011-04-13
  • Rev Recd Date: 2011-09-20
  • Publish Date: 2011-11-15
  • An appropriate coupled cohesive law for predicting mixed mode failure was established by combining normal separation and tangential separation of surface in cohesive zone model and cohesive element method.Xu-Needleman exponential cohesive law with fully shearing failure mechanism was one of the most popular models in literature.Based on the proposed consistently coupled rule/principle,Xu-Needle-man law with fully shearing failure mechanism was proved to be a non-consistently coupled cohesive law by analyzing surface separation work.It is shown that Xu-Needleman is only valid in mixed mode fracture when the normal separation work equals to the tangential separation one.Based on the consistently coupled principle and the modification of Xu-Needleman law,a consistently coupled cohesive(CCC law)was given.It is shown that the proposed CCC law has already overcome the non-consistency defect of Xu-Needleman Law with great promise in mixed mode analysis.
  • loading
  • [1]
    Barenblatt G I. The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses, axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3): 622-636. doi: 10.1016/0021-8928(59)90157-1
    [2]
    Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2
    [3]
    Rose J H, Ferrante J, Smith J R. Universal binding energy curves for metals and bimetallic interfaces[J]. Physical Review Letters, 1981, 47(9): 675-678. doi: 10.1103/PhysRevLett.47.675
    [4]
    Needleman A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525-531. doi: 10.1115/1.3173064
    [5]
    Tvergaard V, Hutchinson J W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6): 1377-1397. doi: 10.1016/0022-5096(92)90020-3
    [6]
    XU X P, Needleman A. Numerical simulations of fast crack-growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434. doi: 10.1016/0022-5096(94)90003-5
    [7]
    XU X P, Needleman A. Void nucleation by inclusion debonding in a crystal matrix[J]. Modeling and Simulation in Materials Science and Engineering, 1993, 1(2): 111-132. doi: 10.1088/0965-0393/1/2/001
    [8]
    Park K, Paulino G H, Roesler J R. Cohesive fracture model for functionally graded fiber reinforced concrete[J]. Cement and Concrete Research, 2010, 40(6): 956-965. doi: 10.1016/j.cemconres.2010.02.004
    [9]
    Park K, Paulino G H, Roesler J R. A unified potential-based cohesive model of mixed-mode fracture[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(6): 891-908. doi: 10.1016/j.jmps.2008.10.003
    [10]
    Tvergaard V. Effect of fiber debonding in a whisker-reinforced metal[J]. Material Science and Engineering, A, 1990, 125(2): 203-213. doi: 10.1016/0921-5093(90)90170-8
    [11]
    Hanson J H, Bittencourt T N, Ingraffea A R. Three-dimensional influence coeeficient method for cohesive crack simulations[J]. Engineering Fracture Mechanics, 2004, 71(15): 2109-2124. doi: 10.1016/j.engfracmech.2003.12.008
    [12]
    Gao H, Ji B. Modeling fracture in nanomaterials via a virtual internal bond method[J]. Engineering Fracture Mechanics, 2003, 70(14): 1777-1791. doi: 10.1016/S0013-7944(03)00124-3
    [13]
    Gao H, Klein P. Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(2): 187-218. doi: 10.1016/S0022-5096(97)00047-1
    [14]
    Klein P, Gao H. Crack nucleation and growth as strain localization in a virtual-bond continuum[J]. Engineering Fracture Mechanics, 1998, 61(1): 21-48. doi: 10.1016/S0013-7944(98)00048-4
    [15]
    Zhu Y, Liechti K M, Ravi-Chandar K. Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces[J]. International Journal of Solids and Structures, 2009, 46(1): 31-51. doi: 10.1016/j.ijsolstr.2008.08.019
    [16]
    Beltz G, Rice J R. Modelling the deformation of crystallince solides[C]Lowe T C, Rollet A D, Follansbee P S.Proceedings of a Symposium Held at the Annual Meeting of the Minerals, Metals and Materials Society, Warrendale: TMS, 1991: 457-480.
    [17]
    Rahulkumar P, Bennison S J, Saigal S, Jagota A. Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers[J]. International Journal of Solids and Structures, 2000, 37(13): 1873-1897. doi: 10.1016/S0020-7683(98)00339-4
    [18]
    Araki W, Nemoto K, Adachi T, Yamaji A. Fracture toughness for mixed mode I/II of epoxy resin[J]. Acta Materialia, 2005, 53(3): 869-875. doi: 10.1016/j.actamat.2004.10.035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1130) PDF downloads(713) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return