Citation: | HE Ming-hua, XIN Ke-gui. Separation Work Analysis of Cohesive Law and Consistently Coupled Cohesive Law[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1342-1351. doi: 10.3879/j.issn.1000-0887.2011.11.008 |
[1] |
Barenblatt G I. The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses, axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3): 622-636. doi: 10.1016/0021-8928(59)90157-1
|
[2] |
Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2
|
[3] |
Rose J H, Ferrante J, Smith J R. Universal binding energy curves for metals and bimetallic interfaces[J]. Physical Review Letters, 1981, 47(9): 675-678. doi: 10.1103/PhysRevLett.47.675
|
[4] |
Needleman A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525-531. doi: 10.1115/1.3173064
|
[5] |
Tvergaard V, Hutchinson J W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6): 1377-1397. doi: 10.1016/0022-5096(92)90020-3
|
[6] |
XU X P, Needleman A. Numerical simulations of fast crack-growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434. doi: 10.1016/0022-5096(94)90003-5
|
[7] |
XU X P, Needleman A. Void nucleation by inclusion debonding in a crystal matrix[J]. Modeling and Simulation in Materials Science and Engineering, 1993, 1(2): 111-132. doi: 10.1088/0965-0393/1/2/001
|
[8] |
Park K, Paulino G H, Roesler J R. Cohesive fracture model for functionally graded fiber reinforced concrete[J]. Cement and Concrete Research, 2010, 40(6): 956-965. doi: 10.1016/j.cemconres.2010.02.004
|
[9] |
Park K, Paulino G H, Roesler J R. A unified potential-based cohesive model of mixed-mode fracture[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(6): 891-908. doi: 10.1016/j.jmps.2008.10.003
|
[10] |
Tvergaard V. Effect of fiber debonding in a whisker-reinforced metal[J]. Material Science and Engineering, A, 1990, 125(2): 203-213. doi: 10.1016/0921-5093(90)90170-8
|
[11] |
Hanson J H, Bittencourt T N, Ingraffea A R. Three-dimensional influence coeeficient method for cohesive crack simulations[J]. Engineering Fracture Mechanics, 2004, 71(15): 2109-2124. doi: 10.1016/j.engfracmech.2003.12.008
|
[12] |
Gao H, Ji B. Modeling fracture in nanomaterials via a virtual internal bond method[J]. Engineering Fracture Mechanics, 2003, 70(14): 1777-1791. doi: 10.1016/S0013-7944(03)00124-3
|
[13] |
Gao H, Klein P. Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(2): 187-218. doi: 10.1016/S0022-5096(97)00047-1
|
[14] |
Klein P, Gao H. Crack nucleation and growth as strain localization in a virtual-bond continuum[J]. Engineering Fracture Mechanics, 1998, 61(1): 21-48. doi: 10.1016/S0013-7944(98)00048-4
|
[15] |
Zhu Y, Liechti K M, Ravi-Chandar K. Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces[J]. International Journal of Solids and Structures, 2009, 46(1): 31-51. doi: 10.1016/j.ijsolstr.2008.08.019
|
[16] |
Beltz G, Rice J R. Modelling the deformation of crystallince solides[C]Lowe T C, Rollet A D, Follansbee P S.Proceedings of a Symposium Held at the Annual Meeting of the Minerals, Metals and Materials Society, Warrendale: TMS, 1991: 457-480.
|
[17] |
Rahulkumar P, Bennison S J, Saigal S, Jagota A. Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers[J]. International Journal of Solids and Structures, 2000, 37(13): 1873-1897. doi: 10.1016/S0020-7683(98)00339-4
|
[18] |
Araki W, Nemoto K, Adachi T, Yamaji A. Fracture toughness for mixed mode I/II of epoxy resin[J]. Acta Materialia, 2005, 53(3): 869-875. doi: 10.1016/j.actamat.2004.10.035
|