Citation: | JIN Xiao-ling, HUANG Zhi-long, LEUNG Andrew Y T. Nonstationary Probability Densities of System Response of Strongly Nonlinear Single-Degree-of-Freedom System Subject to Modulated White Noise Excitation[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1294-1305. doi: 10.3879/j.issn.1000-0887.2011.11.004 |
[1] |
Wirsching P H, Yao J T P. Monte Carlo study of seismic structural safety[J]. ASCE Journal of the Structural Division, 1971, 97(5):1497-1519.
|
[2] |
Howell L J, Lin Y K. Response of flight vehicles to nonstationary atmospheric turbulence[J]. AIAA Journal, 1971, 9(11): 2201-2207. doi: 10.2514/3.50026
|
[3] |
Yang Y N. Nonstationary envelope process and first excursion probability[J]. Journal of Structural Mechanics, 1972, 1(2): 231-248. doi: 10.1080/03601217208905341
|
[4] |
Fujimori Y, Lin Y K. Analysis of airplane response to nonstationary turbulence including wing bending flexibility[J]. AIAA Journal, 1973, 11(3): 334-339. doi: 10.2514/3.50474
|
[5] |
Zhang Z C, Lin J H, Zhang Y H, Zhao Y, Howson W P, Williams F W. Non-stationary random vibration analysis for train-bridge systems subjected to horizontal earthquakes[J]. Engineering Structures, 2010, 32(11):3571-3582. doi: 10.1016/j.engstruct.2010.08.001
|
[6] |
Abbas A M, Manohar C S. Reliability-based vector nonstationary random critical earthquake excitations for parametrically excited systems[J]. Structural Safety, 2007, 29(1): 32-48. doi: 10.1016/j.strusafe.2005.11.003
|
[7] |
Caughey T K, Stumpf H F. Transient response of a dynamic system under random excitation[J]. Journal of Applied Mechanics-Transactions of the ASME, 1961, 28: 563-566. doi: 10.1115/1.3641783
|
[8] |
Corotis R B, Marshall T A. Oscillator response to modulated random-excitation[J]. Journal of the Engineering Mechanics Division- ASCE, 1977, 103(4): 501-513.
|
[9] |
Iwan W D, Hou Z K. Explicit solutions for the response of simple systems subjected to nonstationary random-excitation[J]. Structural Safety, 1989, 6(2/4): 77-86. doi: 10.1016/0167-4730(89)90011-8
|
[10] |
Fu G. Seismic response statistics of SDOF system to exponentially modulated coloured input: an explicit solution[J]. Earthquake Engineering and Structural Dynamics, 1995, 24(10): 1355-1370. doi: 10.1002/eqe.4290241006
|
[11] |
Michaelov G, Sarkani S, Lutes L D. Spectral characteristics of nonstationary random processes response of a simple oscillator[J]. Structural Safety, 1999, 21(3): 245-267. doi: 10.1016/S0167-4730(99)00019-3
|
[12] |
Jangid R S. Stochastic response of building frames isolated by lead-rubber bearings[J]. Structural Control & Health Monitoring, 2010, 17(1): 1-22.
|
[13] |
Allam S M, Datta T K. Seismic response of a cable-stayed bridge deck under multi-component non-stationary random ground motion[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(3): 375-393.
|
[14] |
Verdon J M. Response of a single-degree-of-freedom system to modulated white noise[J]. Journal of Applied Mechanics-Transactions of the ASME, 1973, 40: 296-297. doi: 10.1115/1.3422946
|
[15] |
To C W S. Non-stationary random responses of a multi-degree-of-freedom system by the theory of evolutionary spectra[J]. Journal of Sound and Vibration, 1982, 83(2): 273-291. doi: 10.1016/S0022-460X(82)80091-6
|
[16] |
Ahmadi G. Mean square response of a duffing oscillator to a modulated white noise excitation by the generalized method of equivalent linearization[J]. Journal of Sound and Vibration, 1980, 71(1): 9-15. doi: 10.1016/0022-460X(80)90404-6
|
[17] |
Iwan W D, Mason A B. Equivalent linearization for systems subjected to non-stationary random excitation[J]. International Journal of Non-Linear Mechanics, 1980, 15(2): 71-82. doi: 10.1016/0020-7462(80)90001-3
|
[18] |
Fang T, Zhang T S. Non-stationary mean-square response due to uniformly amplitude modulated random excitations[J]. Journal of Sound and Vibration, 1995, 182(3): 369-379. doi: 10.1006/jsvi.1995.0205
|
[19] |
Spanos P D. A method for analysis of non-linear vibrations caused by modulated random-excitation[J]. International Journal of Non-Linear Mechanics, 1981, 16(1): 1-11. doi: 10.1016/0020-7462(81)90026-3
|
[20] |
Kougioumtzoglou I A, Spanos P D. An approximate approach for nonlinear system response determination under evolutionary stochastic excitation[J]. Current Science, 2009, 97(8): 1203-1211.
|
[21] |
Zhu W Q. Nonlinear stochastic dynamics and control in Hamiltonian formulation[J]. Applied Mechanics Reviews, 2006, 59(4): 230-248. doi: 10.1115/1.2193137
|
[22] |
Zhu W Q, Huang Z L, Suzuki Y. Response and stability of strongly non-linear oscillators under wide-band random excitation[J]. International Journal of Non-Linear Mechanics, 2001, 36(8): 1235-1250. doi: 10.1016/S0020-7462(00)00093-7
|
[23] |
Xu Z, Chung Y K. Averaging method using generalized harmonic functions for strongly non-linear oscillators[J]. Journal of Sound and Vibration, 1994, 174(4): 563-576. doi: 10.1006/jsvi.1994.1294
|
[24] |
Khasminskii R Z. On the averaging principle for It stochastic differential equations[J]. Kibernetika, 1968, 4: 260-279. (in Russian)
|
[25] |
Spanos P D, Iwan W D. Computational aspects of random vibration analysis[J]. Journal of the Engineering Mechanics Division- ASCE, 1978, 104(EM6):1043-1415.
|
[26] |
Spanos P D, Sofi A, Di Paola M. Nonstationary response envelope probability densities of nonlinear oscillators[J]. Journal of Applied Mechanics-Transactions of the ASME, 2007, 74(2): 315-324. doi: 10.1115/1.2198253
|