HUANG Ru-chao, CHEN Yong-qiang. Effects of Residual Interface Stress on Effective Thermal Expansion Coefficient of Particle-Filled Composite[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1283-1293. doi: 10.3879/j.issn.1000-0887.2011.11.003
Citation: HUANG Ru-chao, CHEN Yong-qiang. Effects of Residual Interface Stress on Effective Thermal Expansion Coefficient of Particle-Filled Composite[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1283-1293. doi: 10.3879/j.issn.1000-0887.2011.11.003

Effects of Residual Interface Stress on Effective Thermal Expansion Coefficient of Particle-Filled Composite

doi: 10.3879/j.issn.1000-0887.2011.11.003
  • Received Date: 2011-07-26
  • Rev Recd Date: 2011-08-15
  • Publish Date: 2011-11-15
  • The "three configurations" based surface/interface energy theory proposed by Huang et al was used to study the effective properties of thermal elastic nanocomposites.Particular emphasis was placed on the discussions of the influence of the residual interface stress on the thermal expansion coefficient of the said composites.First,the thermo-elastic interface constitutive relations expressed in terms of the first kind Piola-Kirchhoff interface stress and the Lagrangian description of the generalized Young-Laplace equation were presented.Second,the Hashin's composite sphere assemblage(CSA)was taken as the representative volume element(RVE),and the elastic deformations from the stress-free configuration to the reference configuration and from the reference configuration to the current configuration were calculated.Based on the above calculations,an analytical expression of the effective thermal expansion coefficient of thermo-elastic composite was derived.It is shown that the "residual" interface stress has a significant effect on the thermal expansion properties of the thermo-elastic nanocomposites.
  • loading
  • [1]
    Mura T. Micromechanics of Defects in Solids[M]. Dordrecht: Martinus Nijhoff, 1987.
    [2]
    Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials[M]. Amsterdam: Elsevier, 1993.
    [3]
    Milton G W. The Theory of Composites[M]. Cambridge: Cambridge University Press, 2002.
    [4]
    Torquato S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties[M]. New York: Springer, 2002.
    [5]
    Buryachenko V A. Multiparticle effective field and related methods in micromechanics of composite materials[J]. Appl Mech Review, 2001, 54(1): 1-47. doi: 10.1115/1.3097287
    [6]
    胡更开, 郑泉水, 黄筑平. 复合材料有效弹性性质分析方法[J]. 力学进展, 2001, 31(3):361-393.(HU Geng-kai, ZHENG Quan-shui, HUANG Zhu-ping. Micromechanics methods for effective elastic properties of composite materials[J]. Advances in Mechanics, 2001, 31(3):361-393.(in Chinese))
    [7]
    Levin V M. Thermal expansion coefficients of heterogeneous materials[J]. Mekhanika Tverdogo Tela,1967,2(1):88-94.
    [8]
    Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures[J]. Surface Sci Rep, 1997, 29(5/6): 193-263.
    [9]
    Steigmann D J, Ogden R W. Elastic surface-substrate interactions[J].Pro R Soc Lond A, 1999, 455(1982): 437-474. doi: 10.1098/rspa.1999.0320
    [10]
    Haiss W. Surface stress of clean and adsorbate-covered solids[J]. Rep Prog Phys, 2001, 64(5):591-648. doi: 10.1088/0034-4885/64/5/201
    [11]
    Müller P, Saúl A. Elastic effects on surface physics[J]. Surf Sci Rep, 2004, 54(5/8):157-258. doi: 10.1016/j.surfrep.2004.05.001
    [12]
    Fried E, Gurtin M E. A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy[J]. Adv Appl Mech, 2004, 40:1-177. doi: 10.1016/S0065-2156(04)40001-5
    [13]
    Murdoch A I. Some fundamental aspects of surface modeling[J]. J Elasticity, 2005, 80(1/3):33-52. doi: 10.1007/s10659-005-9024-2
    [14]
    DUAN Hui-ling, WANG Jian-xiang, HUANG Zhu-ping, Karihaloo B L. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress[J]. J Mech Phys Solids, 2005, 53(7):1574-1596. doi: 10.1016/j.jmps.2005.02.009
    [15]
    Sharma P, Wheeler L T. Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension[J]. J Appl Mech, 2007, 74(3): 447-454. doi: 10.1115/1.2338052
    [16]
    Chen T Y, Dvorak G J, Yu C C. Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal mechanical connections[J]. Int J Solids Struct, 2007, 44(3/4): 941-955. doi: 10.1016/j.ijsolstr.2006.05.030
    [17]
    DUAN Hui-ling, Karihaloo B L. Thermo-elastic properties of heterogeneous materials with imperfect interfaces: generalized Levin’s formula and Hill’s connections [J]. J Mech Phys Solids, 2007, 55(5):1036-1052. doi: 10.1016/j.jmps.2006.10.006
    [18]
    SUN Li, WU Yi-ming, HUANG Zhu-ping, WANG Jian-xiang. Interface effect on the effective bulk modulus of a particle-reinforced composite[J]. Acta Mech Sinica, 2004, 20(6): 676-679. doi: 10.1007/BF02485873
    [19]
    HUANG Zhu-ping, WANG Jian-xiang. A theory of hyperelasticity of multi-phase media with surface/interface energy effect[J]. Acta Mech, 2006, 182(3/4):195-210. doi: 10.1007/s00707-005-0286-3
    [20]
    HUANG Zhu-ping, SUN Li. Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis[J]. Acta Mech, 2007, 190(1/4):151-163. doi: 10.1007/s00707-006-0381-0
    [21]
    HUANG Zhu-ping, WANG Zhi-qiao, ZHAO Ya-pu, WANG Jian-xiang. Influence of particle-size distribution on effective properties of nanocomposites[C]Advances in Heterogeneous Materials Mechanics (ICHMM-2008), Pennsylvania: Destech Publications, 2008: 925-932.
    [22]
    HUANG Zhu-ping. Erratum to: size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis[J]. Acta Mech, 2010, 215(1/4):363-364. doi: 10.1007/s00707-010-0385-7
    [23]
    HUANG Zhu-ping, WANG Jian-xiang. Erratum to: a theory of hyperelasticity of multi-phase media with surface/interface energy effect [J]. Acta Mech, 2010, 215(1/4): 365-366. doi: 10.1007/s00707-010-0384-8
    [24]
    CHEN Huan, HU Geng-kai, HUANG Zhu-ping. Effective moduli for micropolar composite with interface effect[J]. Int J Solids Struct, 2007, 44(25/26): 8106-8118. doi: 10.1016/j.ijsolstr.2007.06.001
    [25]
    WANG Zhi-qiao, ZHAO Ya-pu, HUANG Zhu-ping. The effects of surface tension on the elastic properties of nano structures[J]. Int J Eng Sci, 2010, 48(2): 140-150. doi: 10.1016/j.ijengsci.2009.07.007
    [26]
    Park H S, Klein P A. Surface stress effects on the resonant properties of metal nanowires: the importance of finite deformation kinematics and the impact of the residual surface stress[J]. J Mech Phys Solids, 2008, 56(11): 3144-3166. doi: 10.1016/j.jmps.2008.08.003
    [27]
    Park H S, Klein P A. Boundary condition and surface stress effects on the resonant properties of metal nanowires[C]Advances in Heterogeneous Materials Mechanics(ICHMM-2008), Pennsylvania: Destech Publications, 2008: 89-96.
    [28]
    黄筑平. 连续介质力学基础[M]. 北京: 高等教育出版社, 2003. (HUANG Zhu-ping. Fundamentals of Continuum Mechanics[M]. Beijing: Higher Education Press, 2003.(in Chinese))
    [29]
    Lu H M, Jiang Q. Surface tension and its temperature coefficient for liquid metals[J]. J Phys Chem B, 2005, 109(32):15463-15468. doi: 10.1021/jp0516341
    [30]
    Zhao M, Zheng W T, Li J C, Wen Z, Gu M X, Sun C Q. Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule[J]. Phys Rev B, 2007,75(8):085427. doi: 10.1103/PhysRevB.75.085427
    [31]
    Mark J E. Polymer Data Handbook[M]. 2nd ed. New York: Oxford University Press, 2009.
    [32]
    吴人洁. 高聚物的表面与界面[M]. 北京:科学出版社,1998. (WU Ren-jie. The Surface and Interface of Polymer[M]. Beijing: Science Press, 1998. (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1449) PDF downloads(844) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return