FANG Shao-mei, JIN Ling-yu, GUO Bo-ling. Existence of the Weak Solution for Quantum Zakharov Equations for Plasmas Model[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1247-1253. doi: 10.3879/j.issn.1000-0887.2011.10.010
Citation: FANG Shao-mei, JIN Ling-yu, GUO Bo-ling. Existence of the Weak Solution for Quantum Zakharov Equations for Plasmas Model[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1247-1253. doi: 10.3879/j.issn.1000-0887.2011.10.010

Existence of the Weak Solution for Quantum Zakharov Equations for Plasmas Model

doi: 10.3879/j.issn.1000-0887.2011.10.010
  • Received Date: 2011-03-31
  • Rev Recd Date: 2011-07-28
  • Publish Date: 2011-10-15
  • Zakharov equations have a fairly abundant physical background.The existence of weak global solution for quantum Zakharov equations for plasmas model,by means of Arzela-Ascoli theorem,Faedo-Galerkin methods and compactness property was obtained.
  • loading
  • [1]
    Markowich P A, Ringhofer C A, Schmeiser C. Semiconductor Equations[M]. Vienna: Springer, 1990.
    [2]
    Jung Y D. Quantum-mechanical effects on electron-electron scattering in dense high-temperature plasmas[J]. Phys Plasmas, 2001, 8(8): 3842-3844. doi: 10.1063/1.1386430
    [3]
    Kremp D, Bornath Th, Bonitz M, Schlanges M. Quantum kinetic theory of plasmas in strong laser fields[J]. Phys Rev E, 1999, 60(4): 4725-4732. doi: 10.1103/PhysRevE.60.4725
    [4]
    Zakharov V E. Collapse of Langmuir waves[J]. Zh Eksp Teor Fiz, 1972, 62: 1745-1751.
    [5]
    Thornhill S G, ter Haar D. Langmuir turbulence and modulational instability[J]. Phys Rep, 1978, 43(2): 43-99. doi: 10.1016/0370-1573(78)90142-4
    [6]
    Garcia G G, Haas F, de Oliverira L P L, Goedert J. Modified Zakharov equation for plasmas with a quantum correction[J]. Phys Plasma, 2005, 12(1): 012302-012302-8. doi: 10.1063/1.1819935
    [7]
    Triebel H. Interpolation Theory, Function Spaces, Differential Operators[M]. Amsterdam, New York, Oxford: North-Holland Publishing Company, 1978.
    [8]
    Henry D. Geometric Theory of Semilinear Parabolic Equations[M]. Lect Notes in Math 840. Berlin, Heidelberg, New York: Springer-Verlag, 1981.
    [9]
    Schwarz L. Functional Analysis[M]. Courant Institute Lecture Notes. New York: New York University Press, 1964.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1668) PDF downloads(803) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return