GAO Yu-feng, WU Yong-xin, LI Bing. Simplified Method for the Simulation of Ergodic Spatially Correlated Seismic Ground Motions[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1208-1225. doi: 10.3879/j.issn.1000-0887.2011.10.007
Citation: GAO Yu-feng, WU Yong-xin, LI Bing. Simplified Method for the Simulation of Ergodic Spatially Correlated Seismic Ground Motions[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1208-1225. doi: 10.3879/j.issn.1000-0887.2011.10.007

Simplified Method for the Simulation of Ergodic Spatially Correlated Seismic Ground Motions

doi: 10.3879/j.issn.1000-0887.2011.10.007
  • Received Date: 2010-04-14
  • Rev Recd Date: 2011-07-17
  • Publish Date: 2011-10-15
  • A simplified method for the simulation of ergodic spatially correlated seismic ground motions was proposed,based on the commonly used original spectral representation method.Firstly,the phase angles,to represent the correlation among ground motions,were given by explicit items with a clear physical.By using these explicit items,computational efficiency can be increased by changing the decomposition of complex cross-spectral matrix into the decom-position of real incoherence coefficient matrix.Double-indexing frequencies were introduced to simulate ergodic seismic ground motions,and the ergodic feature of the improved method was demonstrated theoretically.Subsequently,an explicit solution of the elements of the lower triangular matrix under Cholesky decomposition was given.By using this explicit solution,the improved method had been simplified,and the computational efficiency can be increased greatly,by avoiding repetitive Cholesky decomposition of cross-spectral matrix in every frequency step.At last,a numerical example was employed to illustrate the good character of the improved method.
  • loading
  • [1]
    Shinozuka M, Deodatis G. Stochastic process models for earthquake ground motion[J]. Probabilistic Engineering Mechanics, 1988, 3(3):114-123. doi: 10.1016/0266-8920(88)90023-9
    [2]
    Hao H, Oliveira C S, Penzien J. Multiple-station ground motion processing and simulation based on SMART-1 array date[J]. Nuclear Engineering and Design, 1989, 111(3):293-310. doi: 10.1016/0029-5493(89)90241-0
    [3]
    LI You-sun, Kareem A. Simulation of multivariate nonstationary random processes by FFT[J]. Journal of Engineering Mechanics, ASCE, 1991, 117(5):1037-1058. doi: 10.1061/(ASCE)0733-9399(1991)117:5(1037)
    [4]
    Zerva A. Seismic ground motion simulations from a class of spatial variability models[J]. Earthquake Engineering and Structural Dynamics, 1992, 21(4):351-361. doi: 10.1002/eqe.4290210406
    [5]
    Ramadan O, Novak M. Simulation of spatially incoherent random ground motions[J]. Journal of Engineering Mechanics, ASCE, 1993, 119(5): 997-1016. doi: 10.1061/(ASCE)0733-9399(1993)119:5(997)
    [6]
    Ramadan O, Novak M. Simulation of multidimensional, anisotropic ground motions[J]. Journal of Engineering Mechanics, 1994, 120(8):1173-1785.
    [7]
    Deodatis George. Non-stationary stochastic vector processes: seisimic ground motion applications[J]. Probabilistic Engineering Mechanics, 1996, 11(3):149-168. doi: 10.1016/0266-8920(96)00007-0
    [8]
    Shrikhande M, Gupta Vinay K. Synthesizing ensembles of spatially correlated accelerograms[J]. Journal of Engineering Mechanics, ASCE, 1998, 124(11):1185-1192. doi: 10.1061/(ASCE)0733-9399(1998)124:11(1185)
    [9]
    Paola M Di, Zingales M. Digital simulation of multivariate earthquake ground motions[J]. Earthquake Engineering and Structural Dynamics, 2000, 17(2):1011-1027.
    [10]
    Jankowski R, Wilde K. A simple method of conditional random field simulation of ground motions for long structures[J]. Engineering Structures, 2000, 22(5): 552-561. doi: 10.1016/S0141-0296(98)00125-4
    [11]
    Shama A A. Simplified procedure for simulating spatially correlated earthquake ground motions[J]. Engineering Structures, 2007, 29(2): 248-258. doi: 10.1016/j.engstruct.2006.04.018
    [12]
    屈铁军,王前信. 空间相关的多点地震动合成基本公式[J]. 地震工程与工程振动, 1998, 18(1):8-15. (QU Tie-jun, WANG Qian-xin . Simulation of spatially correlative time histories of multi point ground motion part Ⅰ: fundamental formulas[J]. Journal of Earthquake Engineering and Engineering Vibration, 1998, 18(1): 8-15.(in Chinese))
    [13]
    屈铁军,王前信. 空间相关的多点地震动合成合成实例[J]. 地震工程与工程振动, 1998, 18(2):25-32. (QU Tie-jun, WANG Qian-xin. Simulation of spatially correlative time histories of multi point ground motion part Ⅱ: application of fundamental formulas[J]. Journal of Earthquake Engineering and Engineering Vibration, 1998, 18(2): 25-32.(in Chinese))
    [14]
    夏友柏,王年桥,张尚根. 一种合成多点地震动时程的方法[J]. 世界地震工程, 2002, 18 (1):119-122. (XIA You-bo, WANG Nian-qiao, ZHANG Shang-gen. A simulation method for spatial correlative time histories of multi-point ground motion[J]. World Information on Earthquake Engineering, 2002, 18(1): 119-122.(in Chinese))
    [15]
    刘先明,叶继红,李爱群. 空间相关多点地震动合成的简化方法[J]. 工程抗震, 2003, (1):30-36. (LIU Xian-ming, YE Ji-hong, LI Ai-qun. A simplified method for the simulation of the time histories of spatial correlative multi-point ground motion[J]. Earthquake Resistant Engineering, 2003, (1): 30-36.(in Chinese))
    [16]
    梁建文. 非平稳地震动过程模拟方法[J]. 地震学报, 2005, 27(2):213-228. (LIANG Jian-wen. Simulation of non-stationary ground motion processes[J]. Acta Seismologica Sinca, 2005, 27(2): 213-228.(in Chinese))
    [17]
    梁建文. 非平稳地震动过程模拟方法[J]. 地震学报, 2005, 27(3): 346-351. ( LIANG Jian-wen. Simulation of non-stationary ground motion processes[J]. Acta Seismologica Sinca, 2005, 27(3): 346-351.(in Chinese))
    [18]
    胡亮,李黎,樊剑. 基于特征正交分解的空间变异地震动模拟[J]. 西南交通大学学报,2006, 41(6): 685-689. (HU Liang, LI Li, FAN Jian. Proper orthogonal decomposition-based simulation of spatially correlated seismic ground motions[J]. Journal of Southwest Jiaotong University, 2006, 41(6): 685-689.(in Chinese))
    [19]
    董汝博,周晶,冯新. 一种考虑局部场地收敛性的多点地震动合成方法[J]. 振动与冲击, 2007, 26(4):5-9. (DONG Ru-bo, ZHOU Jing, FENG Xin. Simulation of non-stationary spatially correlative time histories of multi-point ground motion [J]. Journal of Earthquake Engineering and Engineering Vibration, 2007, 26(4): 5-9.(in Chinese))
    [20]
    董汝博,周晶,冯新. 非平稳空间相关多点地震动合成方法研究[J]. 地震工程与工程振动, 2007, 27(3):10-14. (DONG Ru-bo, ZHOU Jing, FENG Xin. A local convergent method for simulation multi-point earthquake ground motion[J]. Journal of Vibration and Shock, 2007, 27(3): 10-14.(in Chinese))
    [21]
    全伟,李宏男. 基于小波变换的拟合规范反应谱多维地震动模拟[J]. 地震工程与工程振动, 2007, 27(4):103-108. (QUAN Wei, LI Hong-nan. Generation of spectrum-compatible multi-dimensional ground motions via wavelet transform[J]. Journal of Earthquake Engineering and Engineering Vibration, 2007, 27(4): 103-108.(in Chinese))
    [22]
    Shinozuka M. Simulation of multivariate and multidimensional random processes[J]. Journal of the Acoustical Society of America, 1971, 49(1):357-368. doi: 10.1121/1.1912338
    [23]
    Shinozuka M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25(1):111-128. doi: 10.1016/0022-460X(72)90600-1
    [24]
    Yang J N. Simulation of random envelope processes[J]. Journal of Sound and Vibration, 1972, 21(1):73-85. doi: 10.1016/0022-460X(72)90207-6
    [25]
    Vaicaitis R, Takeno M, Shinozuka M. Response analysis of tall buildings to wind loadings[J]. Journal of Structure Engineering, ASCE, 1975, 101(3):585-600.
    [26]
    Shinozuka M, Ynu C B, Seya H. Stochastic methods in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36(1/3):829-843. doi: 10.1016/0167-6105(90)90080-V
    [27]
    Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral representation[J]. Applied Mechanics Review, 1991, 44(4):191-204. doi: 10.1115/1.3119501
    [28]
    Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics, ASCE, 1996, 122(8):778-787. doi: 10.1061/(ASCE)0733-9399(1996)122:8(778)
    [29]
    Der Kiureghian A, Keshishian P, Hakobian A. Multiple support response spectrum analysis of bridges including the site-response effect and the MSRS code[R]. Earthquake Engineering Research Center, College of Engineering, University of California, 1997.
    [30]
    Yang W W, Chang T Y P, Chang C C. An efficient wind field simulation technique for bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 19(67/68): 697-708.
    [31]
    Yang W W, Chang T Y P, Chang C C. Numerical simulation of turbulent fluctuations along the axis of a bridge[J]. Engineering Structures, 1998, 20(9):837-848. doi: 10.1016/S0141-0296(97)00112-0
    [32]
    Cao Y H, Xiang H F, Zhou Y. Simulation of stochastic wind velocity field on long-span bridges[J]. Journal of Engineering Mechanics, 2000, 126(1):1-6. doi: 10.1061/(ASCE)0733-9399(2000)126:1(1)
    [33]
    Li Y L, Liao H L, Qiang S Z. Simplifying the simulation of stochastic wind velocity field for long cable-stayed bridges[J]. Computes and Structures, 2004, 82(20/21):1591-1598. doi: 10.1016/j.compstruc.2004.05.007
    [34]
    Loh C H, Lin S G. Directionality and simulation in spatial variation of seismic waves[J]. Engineering Structures, 1990, 12(2):134-143. doi: 10.1016/0141-0296(90)90019-O
    [35]
    Harichandran R S, Vanmarcke Erik H. Stochastic variation of earthquake ground motion in space and time[J]. Journal of Engineering Mechanics, ASCE, 1986, 112(2):154-174. doi: 10.1061/(ASCE)0733-9399(1986)112:2(154)
    [36]
    Feng Q M, Hu Y X. Spatial correlation of earthquake motion and its effect on structural response[C]Proc of US-PRC, Bilateral Workshop on Earthquake Engineering. Vol 1, A-5, Beijing: 1982.
    [37]
    Loh C H, Yeh Y T. Spatial variation and stochastic modeling of seismic differential ground movement[J]. Earthquake Engineering and Structural Dynamics, 1988, 16 (5):583-596. doi: 10.1002/eqe.4290160409
    [38]
    Clough R W, Penzien J. Dynamics of Structures[M]. 2nd ed. Singapore: McGraw Hill, Inc, 1993.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1700) PDF downloads(737) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return