JI Yuan-yuan, WU Hua, MA He-ping, GUO Ben-yu. Multidomain Pseudospectral Methods for Nonlinear Convection-Diffusion Equations[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1169-1181. doi: 10.3879/j.issn.1000-0887.2011.10.004
Citation: JI Yuan-yuan, WU Hua, MA He-ping, GUO Ben-yu. Multidomain Pseudospectral Methods for Nonlinear Convection-Diffusion Equations[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1169-1181. doi: 10.3879/j.issn.1000-0887.2011.10.004

Multidomain Pseudospectral Methods for Nonlinear Convection-Diffusion Equations

doi: 10.3879/j.issn.1000-0887.2011.10.004
  • Received Date: 2011-05-18
  • Rev Recd Date: 2011-07-28
  • Publish Date: 2011-10-15
  • Multidomain pseudospectral approximations to nonlinear convection-diffusion equations were considered.The schemes were formulated in the Legendre-Galerkin method but the nonlinear term was collocated at the Legendre/Chebyshev-Gauss-Lobatto points inside each subinterval.Appropriate base functions were introduced so that the matrix of system was sparse and the method can be implemented efficiently and in parallel.The stability and the optimal rate of convergence of the methods were proved.Numerical results were given for both the single domain and the multidomain methods to make a comparison.
  • loading
  • [1]
    Guo B Y. Spectral Methods and Their Applications[M]. Singapore: World Scientific, 1998.
    [2]
    Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods. Scientific Computation:Fundamentals in Single Domains[M]. Berlin: Springer-Verlag, 2006.
    [3]
    Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods. Scientific Computation: Evolution to Complex Geometries and Applications to Fluid Dynamics[M]. Berlin: Springer, 2007.
    [4]
    Pavoni D. Single and multidomain Chebyshev collocation methods for the Korteweg-de Vries equation[J]. Calcolo, 1988, 25(4): 311-346. doi: 10.1007/BF02575839
    [5]
    Quarteroni A. Domain decomposition methods for systems of conservation laws: spectral collocation approximations[J]. SIAM J Sci Statist Comput, 1990, 11(6): 1029-1052. doi: 10.1137/0911058
    [6]
    Funaro D. Domain decomposition methods for pseudospectral approximations part Ⅰ: second order equations in one dimension[J]. Numer Math, 1988, 52(3): 329-344.
    [7]
    Heinrichs W. Domain decomposition for fourth-order problems[J]. SIAM J Numer Anal, 1993, 30(2): 435-453. doi: 10.1137/0730021
    [8]
    Gervasio P, Saleri F. Stabilized spectral element approximation for the Navier-Stokes equations[J]. Numer Mathods Partial Differential Eq, 1998, 14(1): 115-141.
    [9]
    Szabo B, Babuska I. Finite Element Analysis[M]. New York: A Wiley-Interscience Publication, John Wiley & Sons Inc, 1991.
    [10]
    Shen J. Efficient spectral-Galerkin method Ⅰ: direct solvers for second- and fourth-order equations using Legendre polynomials[J]. SIAM J Sci Comput, 1994, 15(6): 1489-1505. doi: 10.1137/0915089
    [11]
    Karniadakis G E, Sherwin S J. Spectral hp Element Methods for CFD[M]. Numerical Mathematics and Scientific Computation. New York: Oxford University Press, 1999.
    [12]
    Bernardi C, Maday Y. Polynomial interpolation results in Sobolev spaces[J]. J Comput Appl Math, 1992, 43(1/2): 53-80. doi: 10.1016/0377-0427(92)90259-Z
    [13]
    Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam: North Holland, 1978.
    [14]
    Schwab C. p- and hp-Finite Element Methods[M]. Numerical Mathematics and Scientific Computation. New York: The Clarendon Press, Oxford University Press, 1998.
    [15]
    Ma H P, Guo B Y. Composite Legendre-Laguerre pseudospectral approximation in unbounded domains[J]. IMA J Numer Anal, 2001, 21(2): 587-602. doi: 10.1093/imanum/21.2.587
    [16]
    Guo B Y, Ma H P. Composite Legendre-Laguerre approximation in unbounded domains[J]. J Comput Math, 2001, 19(1): 101-112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1608) PDF downloads(866) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return