RONG Hai-wu, WANG Xiang-dong, LUO Qi-zhi, XU Wei, FANG Tong. Subharmonic Response of a Single-Degree-of-Freedom Linear Vibroimpact System to a Narrow-Band Random Excitation[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1084-1091. doi: 10.3879/j.issn.1000-0887.2011.09.007
Citation: RONG Hai-wu, WANG Xiang-dong, LUO Qi-zhi, XU Wei, FANG Tong. Subharmonic Response of a Single-Degree-of-Freedom Linear Vibroimpact System to a Narrow-Band Random Excitation[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1084-1091. doi: 10.3879/j.issn.1000-0887.2011.09.007

Subharmonic Response of a Single-Degree-of-Freedom Linear Vibroimpact System to a Narrow-Band Random Excitation

doi: 10.3879/j.issn.1000-0887.2011.09.007
  • Received Date: 2010-11-12
  • Rev Recd Date: 2011-06-16
  • Publish Date: 2011-09-15
  • The subharmonic response of single-degree-of-freedom linear vibroimpact oscillator with a onesided barrier to narrow-band random excitation was investigated.The analysis was based on a special Zhuravlev transformation,which reduces the system to one without impacts,or velocity jumps,thereby permitting the applications of asymptotic averaging over the period for slowly varying inphase and quadrature responses.The averaged stochastic equations were solved exactly by the method of moments for the mean square response amplitude for the case of zero offset.A perturbation-based moment closure scheme was proposed for the case of nonzero offset.The effects of damping,detuning,bandwidth and magnitudes of random excitations were analyzed.The theoretical analyses were verified by numerical results.Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings.
  • loading
  • [1]
    金栋平,胡海岩.碰撞振动与控制[M]. 第一版.北京:科学出版社,2005.(JIN Dong-ping, HU Hai-yan. Impact Vibration and Control[M]. 1st ed. Beijing: Science Press, 2005. (in Chinese))
    [2]
    Dimentberg M F, Ioutchenko D V. Random vibrations with impacts: a review[J]. Nonlinear Dynamics, 2004, 36(2/4):229-254. doi: 10.1023/B:NODY.0000045510.93602.ca
    [3]
    Metrikyn V S. On the theory of vibro-impact devices with randomly varying parameters[J]. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, 1970, 13: 4-6.( in Russian)
    [4]
    Stratonovich R L. Topics in the Theory of Random Noise[M]. Vol 1/2. New York: Gordon and Breach, 1963, 1967.
    [5]
    Dimentberg M F, Menyailov A. Certain stochastic problems of vibroimpact systems[J]. Mechanics of Solids, 1976, 11(2): 4-7.
    [6]
    Jing H S, Sheu K C. Exact stationary solutions of the random response of a single-degree-of-freedom vibroimpact system[J]. Journal of Sound and Vibration, 1990, 141(3): 363-373. doi: 10.1016/0022-460X(90)90632-A
    [7]
    Jing H S, Young M. Random response of a single-degree-of-freedom vibroimpact system with clearance[J]. Earthquake Engineering and Structural Dynamics, 1990, 19(6): 789-798. doi: 10.1002/eqe.4290190602
    [8]
    Huang Z L, Liu Z H, Zhu W Q. Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations[J]. Journal of Sound and Vibration, 2004, 275(1/2): 223-240. doi: 10.1016/j.jsv.2003.06.007
    [9]
    FENG Jin-qian, XU Wei, RONG Hai-wu, WANG Rui. Stochastic response of Duffing-van der Pol vibro-impact system under additive and multiplicative random excitations[J]. International Journal of Non-Linear Mechanics, 2009, 44(1):51-57. doi: 10.1016/j.ijnonlinmec.2008.08.013
    [10]
    Zhuravlev V F. A method for analyzing vibration-impact systems by means of special functions[J]. Mechanics of Solids, 1976, 11(2): 23-27.
    [11]
    Dimentberg M F. Random vibrations of an isochronous SDOF bilinear system[J]. Nonlinear Dynamics, 1996, 11(4): 401-405.
    [12]
    Iourtchenko D V, Dimentberg M F. Energy balance for random vibrations of piecewise-conservative systems[J]. Journal of Sound and Vibration, 2001, 248(5): 913-923. doi: 10.1006/jsvi.2001.3853
    [13]
    Feng Q, He H. Modeling of the mean Poincaré map on a class of random impact oscillators[J]. European Journal of Mechanics A/Solids, 2003, 22(2): 267-281. doi: 10.1016/S0997-7538(03)00015-9
    [14]
    Iourtchenko D V, Song L L. Numerical investigation of a response probability density function of stochastic vibroimpact systems with inelastic impacts[J]. International Journal of Non-Linear Mechanics, 2006, 41(3):447-455. doi: 10.1016/j.ijnonlinmec.2005.10.001
    [15]
    Dimentberg M F, Iourtchenko D V, Vanewijk O. Subharmonic response of a quasi-isochronous vibroimpact system to a randomly disordered periodic excitation[J]. Nonlinear Dynamics, 1998, 17(2): 173-186. doi: 10.1023/A:1008247831908
    [16]
    Nayfeh A H, Serhan S J. Response statistics of nonlinear systems to combined deterministic and random excitations[J]. International Journal of Non-Linear Mechanics, 1990, 25(5):493-509. doi: 10.1016/0020-7462(90)90014-Z
    [17]
    Zhuravlev V F. A method for analyzing vibration-impact systems by means of special functions[J]. Mechanics of Solids, 1976, 11(2):23-27.(English translation of the Russian journal Mekhanika Tverdogo Tela)
    [18]
    Sanders J, Verhulst F. Averaging Methods in Nonlinear Dynamical Systems[M]. New York: Springer-Verlag, 1985.
    [19]
    朱位秋.随机振动[M].北京:科学出版社,1992.(ZHU Wei-qiu. Random Vibration[M]. Beijing: Science Press, 1992. (in Chinese))
    [20]
    Shinozuka M. Simulation of multivariate and multidimensional random processes[J]. Journal of Sound and Vibration, 1971, 19(4): 357-367.
    [21]
    Shinozuka M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25(1): 111-128. doi: 10.1016/0022-460X(72)90600-1
    [22]
    RONG Hai-wu, XU Wei, MENG Guang, FANG Tong. Response of Duffing oscillator to combined deterministic harmonic and random excitation[J]. Journal of Sound and Vibration, 2001, 242(2):362-368. doi: 10.1006/jsvi.2000.3329
    [23]
    马少娟, 徐伟, 李伟, 靳艳飞. 基于Chebyshev多项式逼近的随机 van der Pol系统的倍周期分岔分析[J]. 物理学报, 2005, 54(8):3508-3515.(MA Shao-juan, XU Wei, LI Wei, JIN Yan-fei. Period-doubling bifurcation analysis of stochastic van der Pol system via Chebyshev polynomial approximation[J]. Acta Physica Sinica, 2005, 54(8):3508-3515. (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1820) PDF downloads(741) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return