Citation: | LIU Yu-jin, SHENG Wan-cheng. Generalized Riemann Problem for Gas Dynamic Combustion[J]. Applied Mathematics and Mechanics, 2011, 32(8): 1011-1020. doi: 10.3879/j.issn.1000-0887.2011.08.011 |
[1] |
Courant R, Friedrichs K O. Supersonic Flow and Shock Waves[M]. New York: Interscience, 1948.
|
[2] |
Williams F A. Combustion Theory[M]. Menlo Park: Benjamin Commings, 1985.
|
[3] |
Chorin A J. Random choice methods with application to reacting gas flow[J]. J Comp Phys, 1977, 25(3): 253-272. doi: 10.1016/0021-9991(77)90101-2
|
[4] |
Teng Z H, Chorin A J, Liu T P. Riemann problems for reacting gas with application to transition[J]. SIAM J Appl Math, 1982, 42(5): 964-981. doi: 10.1137/0142069
|
[5] |
Zhang T, Zheng Y X. Riemann problem for gasdynamic combustion[J]. J Differential Equations, 1989, 77(2): 203-230. doi: 10.1016/0022-0396(89)90142-3
|
[6] |
Li T T, Yu W C. Boundary Value Problem for Quasilinear Hyperbolic Systems[M]. Duke University Mathematics Series V, 1985.
|
[7] |
Bourgeade A, Le Floch Ph, Raviart P A. Approximate solution of the generalized Riemann problem and application[C]Carasso C, Raviart P A, Serre D.Nonlinear Hyperbolic Problems Proccedings St. Etienne. Lecture Notes in Mathematics 1270, Springer-Verlag, 1986: 1-9.
|
[8] |
Le Floch Ph, Raviart P A. An asymtotic expansion for the solution of the generalized Riemann problem—part 1: general theory[J].Ann Inst H Poincaré, Nonlinear Analysis, 1988, 5(2):179-207.
|
[9] |
Ben-Artzi M. The generalized Riemann problem for reactive flows[J]. Journal of Computational Physics, 1989, 81(1):70-101. doi: 10.1016/0021-9991(89)90065-X
|
[10] |
Bourgeade A, Le Floch Ph, Raviart P A. An asymptotic expansion for the solution of the generalized Riemann problem—part 2: application to the equation of gas dynamics[J]. Ann Inst H Poincaré, Nonlinear Analysis, 1989, 6(6): 437-480.
|
[11] |
Chang T, Hsiao L. The Riemann Problem and Interaction of Waves in Gas Dynamics[M]. Pitman Monographs, No. 41, Longman Scientific and Technical, Essex, 1989.
|
[12] |
Li T T. Global Classical Solutions for Quasilinear Hyperbolic System[M]. New York: John Wiley and Sons, 1994.
|
[13] |
Godlewski E, Raviart P-A. Numerical Approximation of Hyperbolic Systems of Conservation Laws[M]. Appl Math Science 118, New York: Springer, 1996.
|
[14] |
Sheng W C, Sun M N, Zhang T. The generalized Riemann problem for a scalar nonconvex Chapman-Jouguet combustion model[J]. SIAM J Appl Math, 2007, 68(2): 544-561. doi: 10.1137/060672650
|
[15] |
Sun M N, Sheng W C. The generalized Riemann problem for a scalar Chapman-Jouguet combustion model[J]. Z Angew Math Phys, 2009, 60(2): 271-283. doi: 10.1007/s00033-007-6130-y
|
[16] |
Sheng W C, Zhang T. Structural stability of solutions to the Riemann problem for a scalar nonconvex CJ combustion model[J]. Discrete Contin Dyn Syst, 2009, 25(2): 651-667. doi: 10.3934/dcds.2009.25.651
|
[17] |
Bao W, Jin S. The random projection method for hyperbolic conservation laws with stiff reaction terms[J]. J Comput Phys, 2000, 163(1):216-248. doi: 10.1006/jcph.2000.6572
|
[18] |
Tan D C, Zhang T. Riemann problem for the selfsimilar ZND-model in gas dynamical combustion[J]. J Differential Equations, 1992, 95(2): 331-369. doi: 10.1016/0022-0396(92)90035-L
|
[19] |
Hsu C H, Lin S S. Some qualitative properties of the Riemann problem in gas dynamical combustion[J]. J Differential Equations, 1997, 140(1): 10-43. doi: 10.1006/jdeq.1997.3304
|