Citation: | G. H. Rahimi, M. Arefi, M. J. Khoshgoftar. Application and Analysis of a Functionally Graded Piezoelectrical Rotating Cylinder as a Mechanical Sensor Subjected to Pressure and Thermal Loads[J]. Applied Mathematics and Mechanics, 2011, 32(8): 934-945. doi: 10.3879/j.issn.1000-0887.2011.08.004 |
[1] |
Liu X, Wang Q, Quek S T. Analytical solution for free vibration of piezoelectric coupled moderately thick circular plates[J]. Int J Solids Struct, 2002, 39(8): 2129-2151. doi: 10.1016/S0020-7683(02)00081-1
|
[2] |
Hou P F, Leung A Y T. The transient responses of magneto-electro-elastic hollow cylinders[J]. Smart Mater Struct, 2004, 13: 762-776. doi: 10.1088/0964-1726/13/4/014.
|
[3] |
Kollias A T, Avaritsiotis J N. A study on the performance of bending mode piezoelectric accelerometers[J]. Sens Actuators A, 2005, 121(2): 434-442. doi: 10.1016/j.sna.2005.03.014
|
[4] |
Dai H L, Wang X. Stress wave propagation in piezoelectric fiber reinforced laminated composites subjected to thermal shock[J].Composite Struct, 2006, 74(1): 51-62. doi: 10.1016/j.compstruct.2005.03.007
|
[5] |
Pietrzakowski M. Piezoelectric control of composite plate vibration: effect of electric potential distribution[J]. Comput Struct, 2008, 86(9): 948-954. doi: 10.1016/j.compstruc.2007.04.023
|
[6] |
Babaei M H, Chen Z T. Exact solutions for radially polarized and magnetized magnetoelectroelastic rotating cylinders[J]. Smart Mater Struct, 2008, 17(2): 25-35.
|
[7] |
Khoshgoftar M J, Ghorbanpour Arani A, Arefi M. Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material[J]. Smart Mater Struct, 2009, 18(11). doi: 10.1088/0964-1726/18/11/115007.
|
[8] |
Jabbari M, Sohrabpour S, Eslami M R. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads[J]. Int J Pressure Vessel Piping, 2002, 79(7): 493-497. doi: 10.1016/S0308-0161(02)00043-1
|
[9] |
Frank P I. Introduction to Heat Transfer[M]. New York: John Wiley Press, 1996: 79-86.
|
[10] |
Kang J H. Field equations, equations of motion, and energy functionals for thick shells of revolution with arbitrary curvature and variable thickness from a three-dimensional theory[J]. Acta Mechanica, 2007, 188(1/2): 21-37. doi: 10.1007/s00707-006-0391-y
|
[11] |
Lai M, Rubin D, Krempl E. Introduction to Continuum Mechanics[M]. 3rd ed. Oxford: Buttenvorth-Heinemann Press, 1999: 95-108.
|
[12] |
Boresi A. Advanced Mechanics of Materials[M]. 5th ed. New York: John Wiley and Sons Press, 1993: 55-67.
|