Citation: | CUI Yuan-qing, YANG Wei, ZHONG Zheng. Green’s Function for T-Stress of a Semi-Infinite Plane Crack[J]. Applied Mathematics and Mechanics, 2011, 32(8): 912-919. doi: 10.3879/j.issn.1000-0887.2011.08.002 |
[1] |
Williams M L. On the stress distribution at the base of a stationary crack[J]. Journal of Applied Mechanics—Transactions of the ASME, 1957, 24: 111-114.
|
[2] |
杨卫.宏微观断裂力学[M]. 北京:国防工业出版社, 1995.(YANG Wei. Macroscopic and Microscopic Fracture Mechanics[M]. Beijing: National Defence Press, 1995.(in Chinese))
|
[3] |
Westergaard H M. Bearing pressures and cracks[J]. Journal of Applied Mechanics—Transactions of the ASME, 1939, 6: 49-53.
|
[4] |
Sih G C. On the Westergaard method of crack analysis[J]. International Journal of Fracture Mechanics, 1966, 2(4): 628-631.
|
[5] |
Larsson S G, Carlsson A J. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials[J]. Journal of the Mechanics and Physics of Solids, 1973, 21(4): 263-277. doi: 10.1016/0022-5096(73)90024-0
|
[6] |
Rice J R. Limitations to the small scale yielding approximation for crack tip plasticity[J].Journal of the Mechanics and Physics of Solids, 1974, 22(1): 17-26. doi: 10.1016/0022-5096(74)90010-6
|
[7] |
Cotterell B, Rice J R. Slightly curved or kinked cracks[J]. International Journal of Fracture, 1980, 16(2): 155-169. doi: 10.1007/BF00012619
|
[8] |
Tvergaard V. Effect of T-stress on crack growth under mixed mode Ⅰ-Ⅲ loading[J]. International Journal of Solids and Structures, 2008, 45(18/19): 5181-5188. doi: 10.1016/j.ijsolstr.2008.05.014
|
[9] |
Li X F, Tang B Q, Peng X L, Huang Y. Influence of elastic T-stress on the growth direction of two parallel cracks[J]. Structural Engineering and Mechanics, 2010, 34(3): 377-390.
|
[10] |
Leevers P S, Radon J C. Inherent stress biaxiality in various fracture specimen geometries[J]. International Journal of Fracture, 1982, 19(4): 311-325. doi: 10.1007/BF00012486
|
[11] |
Kfouri A P. Some evaluations of the elastic T-term using Eshelby’s method[J]. International Journal of Fracture, 1986, 30(4): 301-315. doi: 10.1007/BF00019710
|
[12] |
Sham T L. The determination of the elastic T-term using higher order weight functions[J].International Journal of Fracture, 1991, 48(2): 81-102. doi: 10.1007/BF00018392
|
[13] |
Wang X. Elastic T-stress solutions for semi-elliptical surface cracks in finite thickness plates[J]. Engineering Fracture Mechanics, 2003, 70(6): 731-756. doi: 10.1016/S0013-7944(02)00081-4
|
[14] |
Broberg K. A note on T-stress determination using dislocation arrays[J]. International Journal of Fracture, 2005, 131(1): 1-14. doi: 10.1007/s10704-004-3637-5
|
[15] |
Li X. T-stress near the tips of a cruciform crack with unequal arms[J]. Engineering Fracture Mechanics, 2006, 73(6): 671-683. doi: 10.1016/j.engfracmech.2005.11.002
|
[16] |
Fett T, Rizzi G, Bahr H A, Bahr U, Pham V B, Balke H. Analytical solutions for stress intensity factor, T-stress and weight function for the edge-cracked half-space[J].International Journal of Fracture, 2007, 146(3): 189-195. doi: 10.1007/s10704-007-9152-8
|
[17] |
Lewis T, Wang X. The T-stress solutions for through-wall circumferential cracks in cylinders subjected to general loading conditions[J]. Engineering Fracture Mechanics, 2008, 75(10):3206-3225. doi: 10.1016/j.engfracmech.2007.12.001
|
[18] |
Chen Y Z. Closed form solutions of T-stress in plane elasticity crack problems[J]. International Journal of Solids and Structures, 2000, 37(11): 1629-1637. doi: 10.1016/S0020-7683(98)00312-6
|
[19] |
Chen Y Z, Wang Z X, Lin X Y. Evaluation of the T-stress for interacting cracks[J].Computational Materials Science, 2009, 45(2): 349-357. doi: 10.1016/j.commatsci.2008.10.006
|
[20] |
Chen Y Z, Lin X Y. Evaluation of the T-stress in branch crack problem[J]. International Journal of Fracture, 2010, 161(2): 175-185. doi: 10.1007/s10704-010-9451-3
|
[21] |
Sherry A H, France C C, Goldthorpe M R. Compendium of T-stress solutions for two and three dimensional cracked geometries[J]. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18(1): 141-155. doi: 10.1111/j.1460-2695.1995.tb00148.x
|
[22] |
Fett T. A Compendium of T-Stress Solutions[M]. FZKA-6057. Wissenschaftliche Berichte, Karlsruhe: Farschungszentrum Karlsruhe GmbH, 1998.
|
[23] |
Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook[M]. 3rd ed. New York: ASM International, 2000.
|
[24] |
Murakami Y. Stress Intensity Factors Handbook[M]. Oxford: Pergamon Press, 1987.
|
[25] |
Muskhelishvili N. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Groningen: Noordhoff, 1954.
|
[26] |
Erdogan F. On the stress distribution in plates with collinear cuts under arbitrary loads[C]Rosenberg R M, Barton M V, Bisplinghoff R L.Proceedings of the Fourth US National Congress of Applied Mechanics.Oxford: Pergamon Press, 1962, 547-553.
|
[27] |
Sih G C. Application of Muskhelishvili’s method to fracture mechanics[J]. Transactions, the Chinese Association for Advanced Studies, 1962, 25: 25-35.
|
[28] |
Westram I, Ricoeur A, Emrich A, Rdel J, Kuna M. Fatigue crack growth law for ferroelectrics under cyclic electrical and combined electromechanical loading[J]. Journal of the European Ceramic Society, 2007, 27(6): 2485-2494. doi: 10.1016/j.jeurceramsoc.2006.09.010
|
[29] |
Cui Y Q, Yang W. Electromechanical cracking in ferroelectrics driven by large scale domain switching[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(5): 957-965. doi: 10.1007/s11433-011-4308-y
|
[30] |
Cui Y Q, Zhong Z. Large scale domain switching around the tip of an impermeable stationary crack in ferroelectric ceramics driven by near-coercive electric field[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(1): 121-126. doi: 10.1007/s11433-010-4176-x
|