YIN Zhao-hua, CHANG Lei, HU Wen-rui, GAO Peng. Thermocapillary Migration and Interaction of Two Nondeformable Droplets[J]. Applied Mathematics and Mechanics, 2011, 32(7): 761-773. doi: 10.3879/j.issn.1000-0887.2011.07.001
Citation: YIN Zhao-hua, CHANG Lei, HU Wen-rui, GAO Peng. Thermocapillary Migration and Interaction of Two Nondeformable Droplets[J]. Applied Mathematics and Mechanics, 2011, 32(7): 761-773. doi: 10.3879/j.issn.1000-0887.2011.07.001

Thermocapillary Migration and Interaction of Two Nondeformable Droplets

doi: 10.3879/j.issn.1000-0887.2011.07.001
  • Received Date: 2011-04-14
  • Rev Recd Date: 2011-05-18
  • Publish Date: 2011-07-15
  • A numerical study on interactions of two spherical drops in therm ocapillary migration in microgravity was presented. Finite-difference methods were adopted and the interfaces of drops were captured by the fronttracking technique. It is found that the arrangement of drops directly in fluences their migrations and interaction, and that the motion of one drop is mainly determined by the disturbed temperature field because of the existence of another drop.
  • loading
  • [1]
    Young N O, Goldstein J S, Block M J. The motion of bubbles in a vertical temperature gradient[J]. J Fluid Mech , 1959, 6(3): 350-356. doi: 10.1017/S0022112059000684
    [2]
    YIN Zhao-hua, GAO Peng, HU Wen-rui, CHANG Lei. Thermocapillary migration of nondeformable drops[J]. Phys Fluids, 2008, 20(8): 20082101.
    [3]
    Meyyappan M, Wilcos W R, Subramanian R S. The slow axisymmetric motion of two bubbles in a thermal gradient[J]. J Colloid Interface Sci, 1983, 94(1): 243-257. doi: 10.1016/0021-9797(83)90255-2
    [4]
    Meyyappan M, Subramanian R S. The thermocapillary motion of two bubbles oriented arbi-trarily relative to a thermal gradient[J]. J Colloid Interface Sci, 1984, 97(1): 291-294. doi: 10.1016/0021-9797(84)90295-9
    [5]
    Balasubramaniam R, Subramanian R S. Axisymmetric thermal wake interaction of two bubbles in a uniform temperature gradient at large Reynolds and Marangoni numbers[J]. Phys Fluids, 1999, 11(10): 2856-2864. doi: 10.1063/1.870144
    [6]
    Anderson J L. Droplet interactions in thermocapillary motion[J]. Int J Multiphase Flow, 1985, 11(6): 813-824. doi: 10.1016/0301-9322(85)90026-6
    [7]
    Keh H J, Chen S H. The axisymmetric thermocapillary motion of two fluid droplets[J]. Int J Multiphase Flow, 1990, 16(3): 515-527. doi: 10.1016/0301-9322(90)90079-X
    [8]
    Keh H J, Chen S H. Droplet interactions in axisymmetric thermocapillary motion[J]. J Colloid Interface Sci, 1992, 151(1): 1-16. doi: 10.1016/0021-9797(92)90233-C
    [9]
    Zhou H, Davis R H. Axisymmetric thermocapillary migration of two deformable viscous drops[J]. J Colloid Interface Sci, 1996, 181(1): 60-72. doi: 10.1006/jcis.1996.0356
    [10]
    Nas S, Tryggvason G. Thermocapillary interaction of two bubbles or drops[J]. Int J Multi-Phase Flow, 2003, 29(7): 1117 -1135. doi: 10.1016/S0301-9322(03)00084-3
    [11]
    Nas S, Muradoglu M, Tryggvason G. Pattern formation of drops in thermocapillary migration[J]. Int J Heat Mass Transfer, 2006, 49(13/14): 2265-2276. doi: 10.1016/j.ijheatmasstransfer.2005.12.009
    [12]
    Balasubramaniam B, Lacy C E, Woniak G, Subramanian R S. Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity[J]. Phys Fluids, 1996, 8(4): 872-880. doi: 10.1063/1.868868
    [13]
    Brady P T, Herrmann M, Lopez J M. Confined thermocapillary motion of a three-dimensional deformable drop[J]. Phys Fluids, 2011, 23(2): 022101. doi: 10.1063/1.3529442
    [14]
    GAO Peng. Numerical investigation of the drop thermocapillary migration[D]. PhD Thesis. Chinese Academy of Sciences, 2007.
    [15]
    Hick W M. On the motion of two spheres in a fluid[J]. Phil Trans Roy Soc, 1880, 171: 455-492. doi: 10.1098/rstl.1880.0013
    [16]
    Herman R A. On the motion of two spheres in fluid and allied problems[J]. Quart J Pure Appl Math, 1887, 22: 204-262.
    [17]
    Kaneda Y, Ishii K. The hydrodynamic interaction of two spheres moving in an unbounded fluid at small but finite Reynolds number[J]. J Fluid Mech, 1982, 124: 209-217. doi: 10.1017/S0022112082002468
    [18]
    Batchelor G K. An Introduction to Fluid Mechanics[M]. Cambridge: Cambridge University Press, 1967.
    [19]
    吴望一. 流体力学[M]. 上册,下册.北京: 北京大学出版社,1982, 1983.(WU Wang-yi. Fluid Dynamics[M]. Beijing: Peking University Press, 1982, 1983. (in Chinese))
    [20]
    Happle J, Brenner H. Low Reynolds Number Hydrodynamics[M]. The Hague: Martinus Nijhoff Publishers, 1965(1st ed), 1973, 1983(reprint).
    [21]
    严宗毅. 低雷诺数流理论[M]. 北京: 北京大学出版社,2002.(YAN Zong-yi. Theory of Low Reynolds Number Hydrodynamics[M]. Beijing: Peking University Press, 2002. (in Chinese))
    [22]
    Stimson M, Jeffery G B. The motion of two spheres in a viscous fluid[J]. Proc Roy Soc A, 1926, 111: 110. doi: 10.1098/rspa.1926.0053
    [23]
    Goldman A J, Cox R G, Brenner H. The slow motion of two identical arbitrarily oriented spheres through a viscous fluid[J]. Chem Eng Sci, 1966, 21(12): 1151 -1170. doi: 10.1016/0009-2509(66)85036-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1503) PDF downloads(821) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return