Citation: | YIN Zhao-hua, CHANG Lei, HU Wen-rui, GAO Peng. Thermocapillary Migration and Interaction of Two Nondeformable Droplets[J]. Applied Mathematics and Mechanics, 2011, 32(7): 761-773. doi: 10.3879/j.issn.1000-0887.2011.07.001 |
[1] |
Young N O, Goldstein J S, Block M J. The motion of bubbles in a vertical temperature gradient[J]. J Fluid Mech , 1959, 6(3): 350-356. doi: 10.1017/S0022112059000684
|
[2] |
YIN Zhao-hua, GAO Peng, HU Wen-rui, CHANG Lei. Thermocapillary migration of nondeformable drops[J]. Phys Fluids, 2008, 20(8): 20082101.
|
[3] |
Meyyappan M, Wilcos W R, Subramanian R S. The slow axisymmetric motion of two bubbles in a thermal gradient[J]. J Colloid Interface Sci, 1983, 94(1): 243-257. doi: 10.1016/0021-9797(83)90255-2
|
[4] |
Meyyappan M, Subramanian R S. The thermocapillary motion of two bubbles oriented arbi-trarily relative to a thermal gradient[J]. J Colloid Interface Sci, 1984, 97(1): 291-294. doi: 10.1016/0021-9797(84)90295-9
|
[5] |
Balasubramaniam R, Subramanian R S. Axisymmetric thermal wake interaction of two bubbles in a uniform temperature gradient at large Reynolds and Marangoni numbers[J]. Phys Fluids, 1999, 11(10): 2856-2864. doi: 10.1063/1.870144
|
[6] |
Anderson J L. Droplet interactions in thermocapillary motion[J]. Int J Multiphase Flow, 1985, 11(6): 813-824. doi: 10.1016/0301-9322(85)90026-6
|
[7] |
Keh H J, Chen S H. The axisymmetric thermocapillary motion of two fluid droplets[J]. Int J Multiphase Flow, 1990, 16(3): 515-527. doi: 10.1016/0301-9322(90)90079-X
|
[8] |
Keh H J, Chen S H. Droplet interactions in axisymmetric thermocapillary motion[J]. J Colloid Interface Sci, 1992, 151(1): 1-16. doi: 10.1016/0021-9797(92)90233-C
|
[9] |
Zhou H, Davis R H. Axisymmetric thermocapillary migration of two deformable viscous drops[J]. J Colloid Interface Sci, 1996, 181(1): 60-72. doi: 10.1006/jcis.1996.0356
|
[10] |
Nas S, Tryggvason G. Thermocapillary interaction of two bubbles or drops[J]. Int J Multi-Phase Flow, 2003, 29(7): 1117 -1135. doi: 10.1016/S0301-9322(03)00084-3
|
[11] |
Nas S, Muradoglu M, Tryggvason G. Pattern formation of drops in thermocapillary migration[J]. Int J Heat Mass Transfer, 2006, 49(13/14): 2265-2276. doi: 10.1016/j.ijheatmasstransfer.2005.12.009
|
[12] |
Balasubramaniam B, Lacy C E, Woniak G, Subramanian R S. Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity[J]. Phys Fluids, 1996, 8(4): 872-880. doi: 10.1063/1.868868
|
[13] |
Brady P T, Herrmann M, Lopez J M. Confined thermocapillary motion of a three-dimensional deformable drop[J]. Phys Fluids, 2011, 23(2): 022101. doi: 10.1063/1.3529442
|
[14] |
GAO Peng. Numerical investigation of the drop thermocapillary migration[D]. PhD Thesis. Chinese Academy of Sciences, 2007.
|
[15] |
Hick W M. On the motion of two spheres in a fluid[J]. Phil Trans Roy Soc, 1880, 171: 455-492. doi: 10.1098/rstl.1880.0013
|
[16] |
Herman R A. On the motion of two spheres in fluid and allied problems[J]. Quart J Pure Appl Math, 1887, 22: 204-262.
|
[17] |
Kaneda Y, Ishii K. The hydrodynamic interaction of two spheres moving in an unbounded fluid at small but finite Reynolds number[J]. J Fluid Mech, 1982, 124: 209-217. doi: 10.1017/S0022112082002468
|
[18] |
Batchelor G K. An Introduction to Fluid Mechanics[M]. Cambridge: Cambridge University Press, 1967.
|
[19] |
吴望一. 流体力学[M]. 上册,下册.北京: 北京大学出版社,1982, 1983.(WU Wang-yi. Fluid Dynamics[M]. Beijing: Peking University Press, 1982, 1983. (in Chinese))
|
[20] |
Happle J, Brenner H. Low Reynolds Number Hydrodynamics[M]. The Hague: Martinus Nijhoff Publishers, 1965(1st ed), 1973, 1983(reprint).
|
[21] |
严宗毅. 低雷诺数流理论[M]. 北京: 北京大学出版社,2002.(YAN Zong-yi. Theory of Low Reynolds Number Hydrodynamics[M]. Beijing: Peking University Press, 2002. (in Chinese))
|
[22] |
Stimson M, Jeffery G B. The motion of two spheres in a viscous fluid[J]. Proc Roy Soc A, 1926, 111: 110. doi: 10.1098/rspa.1926.0053
|
[23] |
Goldman A J, Cox R G, Brenner H. The slow motion of two identical arbitrarily oriented spheres through a viscous fluid[J]. Chem Eng Sci, 1966, 21(12): 1151 -1170. doi: 10.1016/0009-2509(66)85036-4
|