LUO Han-zhong, LIU Xue-wen, HUANG Xing-chun. Stability and Dispersion Analysis of Reproducing Kernel Collocation Method for Transient Dynamics[J]. Applied Mathematics and Mechanics, 2011, 32(6): 730-740. doi: 10.3879/j.issn.1000-0887.2011.06.010
Citation: LUO Han-zhong, LIU Xue-wen, HUANG Xing-chun. Stability and Dispersion Analysis of Reproducing Kernel Collocation Method for Transient Dynamics[J]. Applied Mathematics and Mechanics, 2011, 32(6): 730-740. doi: 10.3879/j.issn.1000-0887.2011.06.010

Stability and Dispersion Analysis of Reproducing Kernel Collocation Method for Transient Dynamics

doi: 10.3879/j.issn.1000-0887.2011.06.010
  • Received Date: 2010-07-21
  • Rev Recd Date: 2011-04-13
  • Publish Date: 2011-06-15
  • Reproducing kernel collocation method based on strong formulation was introduced for transient dynamics.von Neumann stability and dispersion analysis of reproducing kernel collocation method with central difference temporal discretization was derived to evaluate the stability condition for second order wave problem.The stability analysis algorithm proposed firstly given an approach to predict critical time step for second order wave problem which can greatly save computational time in application.A numerical test was conducted to validate this algorithm.The comparison of numerical critical time step and predicted results shows good agreement.The guidance to choose a proper support size of reproducing kernel shape function is also given.The results by radial basis collocation method are also listed for comparison.
  • loading
  • [1]
    Gingold R A, Monaghan J J.Smoothed particle hydrodynamics: theory and application to nonspherical stars[J]. Royal Astronomical Society, Monthly Notices, 1977, 181:375-389.
    [2]
    Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements[J]. Computational Mechanics, 1992, 10(5):307-318. doi: 10.1007/BF00364252
    [3]
    Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2):229-256. doi: 10.1002/nme.1620370205
    [4]
    Melenk J M, Babuska I. The partition of unity finite element method: basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4):289-314. doi: 10.1016/S0045-7825(96)01087-0
    [5]
    Duarte C A, Oden J T. An h-p adaptive method using clouds[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4):237-262. doi: 10.1016/S0045-7825(96)01085-7
    [6]
    Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8/9):1081-1106. doi: 10.1002/fld.1650200824
    [7]
    Chen J S, Pan C H, Wu C T, Liu W K. Reproducing kernel particle methods for large deformation analysis of non-linear structures[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4):195-227. doi: 10.1016/S0045-7825(96)01083-3
    [8]
    Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics[J]. International Journal for Numerical Methods in Engineering, 1998, 43:839-887. doi: 10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
    [9]
    Atluri S N, Zhu T L. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics[J]. Computational Mechanics, 2000, 25(2/3):169-179. doi: 10.1007/s004660050467
    [10]
    Kansa E J. Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—Ⅰ surface approximations and partial derivatives[J]. Computers and Mathematics With Applications, 1990, 19(8/9):127-145.
    [11]
    Kansa E J. Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—Ⅱ solutions to parabolic, hyperbolic and elliptic partial differential equations[J]. Computers and Mathematics With Applications, 1990, 19(8/9):147-161.
    [12]
    Zhang X, Chen J S, Osher S. A multiple level set method for modeling grain boundary evolution of polycrystalline materials[J]. Interaction and Multiscale Mechanics, 2008, 1:178-191.
    [13]
    Belytschko T, Kronggaus Y, Organ D, Fleming M. Meshless methods: an overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4):3-47. doi: 10.1016/S0045-7825(96)01078-X
    [14]
    张雄,刘岩,马上. 无网格法的理论及应用[J].力学进展,2009, 39(1): 1-36. (ZHANG Xiong, LIU Yan, MA Shang. Meshfree methods and there applications[J]. Advances in Mechanics, 2009, 39(1):1-36. (in Chinese))
    [15]
    Liu G R. Meshfree Methods: Moving Beyond the Finite Element Method[M]. 2nd ed. CRC Press, 2009.
    [16]
    Zhang X, Song K Z, Lu M W, Liu X. Meshless methods based on collocation with radial basis function[J]. Computational Mechanics, 2000, 26(4):333-343. doi: 10.1007/s004660000181
    [17]
    黄娟,张健,陈光淦.一类Schrdinger-Poisson型方程的稳定性[J]. 应用数学和力学,2009,30(11):1381-1386.(HUANG Juan, ZHANG Jiang, CHEN Guang-gin. Stability of Schrdinger-Poisson type equations[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(11):1469-1474.)
    [18]
    Ye Z. A new finite element formulation for planar elastic deformation[J]. International Journal for Numerical Methods in Engineering, 1997, 40(14):2579-2591. doi: 10.1002/(SICI)1097-0207(19970730)40:14<2579::AID-NME174>3.0.CO;2-A
    [19]
    朱合华,杨宝红,蔡永昌,徐斌. 无网格自然单元法在弹塑性分析中的应用[J]. 岩土力学,2004, 25(4):671-674. (ZHU He-hua, YANG Bao-hong, CAI Yong-chang, XU Bin. Application of meshless natural element method to elastoplastic analysis[J]. Rock and Soil Mechanics, 2004, 25(4):671-674. (in Chinese))
    [20]
    熊渊博,龙述尧.用无网格局部Petrov-Galerkin方法分析Winkler弹性地基板[J]. 湖南大学学报(自然科学版), 2004, 31(4): 101-105. (XIONG Yuan-bo, LONG Shu-yao. An analysis of plates on the Winkler foundation with the meshless local Petrov-Galerkin method[J]. Journal of Hunan University (Natural Science), 2004, 31(4):101-105. (in Chinese))
    [21]
    李树忱,程玉民.基于单位分解法的无网格数值流形方法[J].力学学报, 2004, 36(4): 496-500.(LI Shu-chen, CHENG Yu-min. Meshless numerical manifold method based on unit partition[J]. Acta Mechanica Sinica, 2004, 36(4):496-500. (in Chinese))
    [22]
    Hu H Y, Chen J S, Hu W. Error analysis of collocation method based on reproducing kernel approximation[J]. Numerical Methods for Partial Differential Equations, 2009, 27(3):554-580.
    [23]
    Hu H Y, Lai C K, Chen J S. A study on convergence and complexity of reproducing kernel particle method [J]. Interaction and Multiscale Mechanics, 2009, 2:295-319.
    [24]
    Lucy L. A numerical approach to testing the fission hypothesis[J]. The Astronomical Journal, 1977, 82(12):1013-1024. doi: 10.1086/112164
    [25]
    Monoghan J J. Why particle methods work[J]. SIAM Journal on Scientific and Statistical Computing, 1982, 3(4):422-433. doi: 10.1137/0903027
    [26]
    Monoghan J J. An introduction to SPH[J]. Computer Physics Communications, 1988, 48(1): 89-96. doi: 10.1016/0010-4655(88)90026-4
    [27]
    Randles P W, Libersky L D. Smoothed particle hydrodynamics: some recent improvements and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4): 375-408. doi: 10.1016/S0045-7825(96)01090-0
    [28]
    Liu W K, Jun S, Li S, Adee J, Belytschko B. Reproducing kernel particle methods for structural dynamics[J]. International Journal for Numerical Methods in Engineering, 1995, 38: 1655-1679. doi: 10.1002/nme.1620381005
    [29]
    Liu W K, Chen Y. Wavelet and multiple scale reproducing kernel particle methods[J]. International Journal for Numerical Methods in Fluids, 1995, 21(10):901-931. doi: 10.1002/fld.1650211010
    [30]
    Chen J S, Pan C, Roque M O L, Wang H P. A Lagrangian reproducing kernel particle method for metal forming analysis[J]. Computational Mechanics, 1998, 22(3):289-307. doi: 10.1007/s004660050361
    [31]
    LUO Han-zhong, CHEN Jiun-shyan, HU Hsin-yun, HUANG Xing-chun.Stability of radial basis collocation method for transient dynamics[J]. Journal of Shanghai Jiaotong University(Science), 2010, 15(5): 615-621. doi: 10.1007/s12204-010-1057-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1678) PDF downloads(1054) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return