HE Xue-feng, LIU Xing, YIN Xian-fang, WEN Zhi-yu, CHEN Ke-wan. An Active Control Scheme for Improving Mass Resolution of Film Bulk Acoustic Resonators[J]. Applied Mathematics and Mechanics, 2011, 32(6): 702-709. doi: 10.3879/j.issn.1000-0887.2011.06.007
Citation: HE Xue-feng, LIU Xing, YIN Xian-fang, WEN Zhi-yu, CHEN Ke-wan. An Active Control Scheme for Improving Mass Resolution of Film Bulk Acoustic Resonators[J]. Applied Mathematics and Mechanics, 2011, 32(6): 702-709. doi: 10.3879/j.issn.1000-0887.2011.06.007

An Active Control Scheme for Improving Mass Resolution of Film Bulk Acoustic Resonators

doi: 10.3879/j.issn.1000-0887.2011.06.007
  • Received Date: 2011-01-15
  • Rev Recd Date: 2011-04-14
  • Publish Date: 2011-06-15
  • High mass resolution of sensors based on film bulk acoustic resonators(FBARs)was required for detection of small molecules with low concentration.An active control scheme was herein presented for improving the mass resolution of FBAR sensors by adding a feedback voltage,which was obtained by giving a constant gain and a constant phase shift to the current on the electrodes of the FBAR sensors,onto the driving voltage between two electrodes of the FBAR sensors.The acoustic energy produced by the feedback voltage partly compensates the acoustic energy loss from the material damping and the acoustic scattering,which as a consequence improves the quality factor and the mass resolution of FBAR sensors. The explicit expression relating the impedance to the frequency for an FBAR sensor with the active control was derived based on continuum theory by neglecting the influence of the electrodes.Numerical simulations show that the impedance of the FBAR sensor strongly depends on the gain and phase shift of the feedback voltage and the mass resolution of the FBAR sensor can be greatly improved when appropriate gain and phase shift of the feedback voltage are used.Above active control scheme is also an effective solution to improve the resolution of the quartz crystal microbalance(QCM).
  • loading
  • [1]
    Marx K A. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface[J]. Biomacromolecules, 2003, 4(5): 1099-1120. doi: 10.1021/bm020116i
    [2]
    Reed C E, Kanazawa K K, Kaufman J H. Physical description of a viscoelastically loaded AT-cut quartz resonator[J]. Journal of Applied Physics, 1990, 68(5): 1993-2001. doi: 10.1063/1.346548
    [3]
    Kanazawa K K. Mechanical behaviour of films on the quartz microbalance[J]. Faraday Discussions, 1997, 107: 77-90. doi: 10.1039/a702998e
    [4]
    Arce L, Zougagh M, Arce C, Moreno A, Rios A, Valcarcel M. Self-assembled monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin[J]. Biosensors and Bioelectronics, 2007, 22(12): 3217-3223. doi: 10.1016/j.bios.2007.02.014
    [5]
    Rabe J, Buttgenbach S, Schroder J, Hauptmann P. Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids[J]. IEEE Sensors Journal, 2003, 3(4): 361-368. doi: 10.1109/JSEN.2003.815783
    [6]
    Zhao Y P, Wang L S, Yu T X. Mechanics of adhesion in MEMS—a review[J]. Journal of Adhesion Science and Technology, 2003, 17(4):519-546. doi: 10.1163/15685610360554393
    [7]
    Zhang L X, Zhao Y P. Electromechanical model of RF MEMS switches[J]. Microsystem Technologies, 2003, 9(6/7): 420-426. doi: 10.1007/s00542-002-0250-2
    [8]
    An P, Chen J, Hao Y L. Modeling and simulation of a novel vertical actuator based on electrowetting on dielectric[J]. Acta Mechanica Sinica, 2009, 25(5): 669-675. doi: 10.1007/s10409-009-0263-5
    [9]
    Zhang K, Cui Y J, Xiong C Y, Wang C S, Fang J. Electro-mechanical coupling analysis of MEMS structures by boundary element method[J]. Acta Mechanica Sinica, 2004, 20(2): 185-191. doi: 10.1007/BF02484264
    [10]
    Hu Y Q, Zhao Y P, Yu T X. Tensile tests of micro anchors anodically bonded between pyrex glass and aluminum thin film coated on silicon wafer[J]. Microelectronics Reliability, 2008, 48(10): 1720-1723. doi: 10.1016/j.microrel.2008.04.016
    [11]
    Fu Y Q, Luo J K, Du X Y, Flewitt A J, Li Y, Markx G H, Walton A J, Milne W I. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review[J]. Sensors and Actuators B, 2010, 143(2): 606-619. doi: 10.1016/j.snb.2009.10.010
    [12]
    Weber J, Link M, Primig R, Pitzer D, Wersing W, Schreiter M. Investigation of the scaling rules determining the performance of film bulk acoustic resonators operating as mass sensors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(2): 405-412. doi: 10.1109/TUFFC.2007.254
    [13]
    Gabl R, Feucht H D, Zeininger H, Eckstein G, Schreiter M, Primig R, Pitzer D, Wersing W. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles[J]. Biosensors and Bioelectronics, 2004, 19(6): 615-620. doi: 10.1016/S0956-5663(03)00259-8
    [14]
    Weber J, Albers W M, Tuppurainen J, Link M, Gabl R, Wersing W, Schreiter M. Shear mode FBARs as highly sensitive liquid biosensors[J]. Sensors and Actuators A, 2006, 128(1): 84-88. doi: 10.1016/j.sna.2006.01.005
    [15]
    Rey-Mermet S, Lanz R, Muralt P. Bulk acoustic wave resonator operating at 8 GHz for gravimetric sensing of organic films[J]. Sensors and Actuators B, 2006, 114(2): 681-686. doi: 10.1016/j.snb.2005.04.047
    [16]
    Zhang H, Kim E S. Micromachined acoustic resonant mass sensor[J]. Journal of Microelectromechanical Systems, 2005, 14(4): 699-706. doi: 10.1109/JMEMS.2005.845405
    [17]
    Kang Y R, Kang S C, Paek K K, Kim Y K, Kim S W, Ju B K. Air-gap type film bulk acoustic resonator using flexible thin substrate[J]. Sensors and Actuators A, 2005, 117(1): 62-70. doi: 10.1016/j.sna.2004.05.035
    [18]
    Wingqvist G, Bjurstrom J, Hellgren A C, Katardjiev I. Immunosensor utilizing a shear mode thin film bulk acoustic sensor[J]. Sensors and Actuators B, 2007, 127(1): 248-252. doi: 10.1016/j.snb.2007.07.051
    [19]
    Tukkiniemi K, Rantala A, Nirschl M, Pitzer D, Huber T, Schreiter M. Fully integrated FBAR sensor matrix for mass detection[J]. Procedia Chemistry, 2009, 1(1): 1051-1054. doi: 10.1016/j.proche.2009.07.262
    [20]
    Johnston M L, Kymissis I, Shepard K L. FBAR-CMOS oscillator array for mass-sensing applications[J]. IEEE Sensors Journal, 2010, 10(6): 1042-1047. doi: 10.1109/JSEN.2010.2042711
    [21]
    Nirschl M, Rantala A, Tukkiniemi K, Auer S, Hellgren A C, Pitzer D, Schreiter M, Vikholm-Lundin I. CMOS-integrated film bulk acoustic resonators for label-free biosensing[J]. Sensors, 2010, 10(5): 4180-4193. doi: 10.3390/s100504180
    [22]
    Lakin K M. A review of thin-film resonator technology[J]. IEEE Microwave Magazine, 2003, 4(4): 61-67. doi: 10.1109/MMW.2003.1266067
    [23]
    Link M, Weber J, Schreiter M, Wersing W, Elmazria O, Alnot P. Sensing characteristics of high-frequency shear mode resonators in glycerol solutions[J]. Sensors and Actuators B, 2007, 121(2): 372-378. doi: 10.1016/j.snb.2006.03.055
    [24]
    Nirschl M, Schreiter M, Voros J. Comparison of FBAR and QCM-D sensitivity dependence on adlayer thickness and viscosity[J]. Sensors and Actuators A, 2011, 165(2): 415-421. doi: 10.1016/j.sna.2010.11.003
    [25]
    Qiu X T, Tang R, Zhu J, Oiler J, Yu C J, Wang Z Y, Yu H Y. Experiment and theoretical analysis of relative humidity sensor based on film bulk acoustic-wave resonator[J]. Sensors and Actuators B, 2010, 147(2): 381-384. doi: 10.1016/j.snb.2010.04.012
    [26]
    Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98(4): 041301. doi: 10.1063/1.1992666
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1494) PDF downloads(790) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return