WANG Long, WANG Tong-guang, LUO Yuan. Improved NSGA-Ⅱ in Multi-Objective Optimization Studies of Wind Turbine Blades[J]. Applied Mathematics and Mechanics, 2011, 32(6): 693-701. doi: 10.3879/j.issn.1000-0887.2011.06.006
Citation: WANG Long, WANG Tong-guang, LUO Yuan. Improved NSGA-Ⅱ in Multi-Objective Optimization Studies of Wind Turbine Blades[J]. Applied Mathematics and Mechanics, 2011, 32(6): 693-701. doi: 10.3879/j.issn.1000-0887.2011.06.006

Improved NSGA-Ⅱ in Multi-Objective Optimization Studies of Wind Turbine Blades

doi: 10.3879/j.issn.1000-0887.2011.06.006
  • Received Date: 2011-01-15
  • Rev Recd Date: 2011-04-14
  • Publish Date: 2011-06-15
  • The non-dominated sorting genetic algorithm was improved with controlled elitism and dynamic crowding distance,obtaining a novel multi-objective optimization design algorithm for wind turbine blades.As an example,a 5 MW wind turbine blade design,taking maximum power coefficient and minimum blade mass as the optimization objectives,was presented.It is illustrated from the optimal results that this algorithm has a good performance in handling multi-objective optimization of wind turbine and it gives a Pareto-optimal solutions set rather than the optimum solution from the conventional multi-objective optimization problems.The wind turbine blade optimization method presented provides a new idea and general algorithm for multi-objective optimization of wind turbine.
  • loading
  • [1]
    Wilson R E, Lissaman P D S. Applied aerodynamics of wind power machines[R]. Report NSF/RA/N 7413. NTIS PB 238594, Oregon State University, 1974.
    [2]
    Selig M S, Coverstone-Carroll V L. Application of a genetic algorithm to wind turbine design[J]. Journal of Solar Energy Engineering, 1996, 118(1): 22-29.
    [3]
    Wood D H. Dual purpose design of small wind turbine blades[J]. Wind Engineering, 2004, 28(5): 511-528. doi: 10.1260/0309524043028037
    [4]
    Sale D, Jonkman J, Musial W. Development of a hydrodynamic optimization tool for stall-regulated hydrokinetic turbine rotors[C]ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, 2009: 901-906.
    [5]
    Roy R, Hinduja S, Teti R. Recent advances in engineering design optimisation: challenges and future trends[J]. Manufacturing Technology, 2008, 57(2): 697-715.
    [6]
    Horn J, Nafploitis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization[C]Proceedings of the First IEEE Conference on Evolutionary Computation. NJ: IEEE Press, 1994: 82-87.
    [7]
    Knowles J, Corne D. The Pareto archived evolution strategy: a new baseline algorithm for multi-objective optimization[C] Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1999: 98-105.
    [8]
    Kim M, Hiroyasu T, Miki M, Watanabe S. SPEA2+: Improving the performance of the strength Pareto evolutionary algorithm 2[C]Proceedings of 8th International Conference on Parallel Problem Solving From Nature. Birmingham, UK, 2004: 742-751.
    [9]
    Watanabe S, Hiroyasu T, Miki M. NCGA: neighborhood cultivation genetic algorithm for multi-objective optimization problems[C]Proceedings of the Genetic and Evolutionary Compution Conference(GECCO’2002), 2002: 458-465.
    [10]
    Deb K, Agrawal S, Pratab A, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective: NSGA-Ⅱ[J]. Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [11]
    Srinivas N, Deb K. Multi-objective optimization using non-dominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248. doi: 10.1162/evco.1994.2.3.221
    [12]
    Deb K, Agrawal R B. Simulated binary crossover for continuous search space[J]. Complex Syst, 1995, 3(9): 115-148.
    [13]
    Deb K, Goel T. Controlled elitist non-dominated sorting genetic algorithms for better convergence[C]Proceedings of First International Conference on Evolutionary Multi-Criterion Optimization. Zurich, Switzerland, 2001: 67-81.
    [14]
    LUO Biao, ZHENG Jin-hua, XIE Jiong-liang, WU Jun. Dynamic crowding distance—a new diversity maintenance strategy for MOEAs[C]Proceedings of the IEEE International Conference on Natural Computation. NJ: IEEE Press,2008: 580-585.
    [15]
    Par J, Kima J, Shina Y, Leea J, Parka J. 3 MW class offshore wind turbine development[J]. Current Applied Physics, 2010, 10(2): 307-310. doi: 10.1016/j.cap.2009.11.032
    [16]
    Griffin D A, Zuteck M D. Scaling of composite wind turbine blades for rotors of 80 to 120 meter diameter[J]. Journal of Solar Energy Engineering, 2001, 123(4): 310-319. doi: 10.1115/1.1413215
    [17]
    Bossanyi E A. Wind turbine control for load reduction[J]. Wind Energy, 2003, 6(2): 229-244. doi: 10.1002/we.95
    [18]
    DAI Chang-hui, TANG Rui-yuan, WANG Tang-guang. Prediction of aerodynamic performance of a horizontal-axis rotor in condition of wind shear[C]Proc Asian and Pacific Wind Energy Conf, 1988.
    [19]
    Lindenburg C. Aeroelastic Analysis of the LMH64-5 Blade Concept[M]. New York: Addison-Wesley, 2003.
    [20]
    Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, National Renewable Energy Laboratory, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1693) PDF downloads(1027) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return