Citation: | WANG Long, WANG Tong-guang, LUO Yuan. Improved NSGA-Ⅱ in Multi-Objective Optimization Studies of Wind Turbine Blades[J]. Applied Mathematics and Mechanics, 2011, 32(6): 693-701. doi: 10.3879/j.issn.1000-0887.2011.06.006 |
[1] |
Wilson R E, Lissaman P D S. Applied aerodynamics of wind power machines[R]. Report NSF/RA/N 7413. NTIS PB 238594, Oregon State University, 1974.
|
[2] |
Selig M S, Coverstone-Carroll V L. Application of a genetic algorithm to wind turbine design[J]. Journal of Solar Energy Engineering, 1996, 118(1): 22-29.
|
[3] |
Wood D H. Dual purpose design of small wind turbine blades[J]. Wind Engineering, 2004, 28(5): 511-528. doi: 10.1260/0309524043028037
|
[4] |
Sale D, Jonkman J, Musial W. Development of a hydrodynamic optimization tool for stall-regulated hydrokinetic turbine rotors[C]ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, 2009: 901-906.
|
[5] |
Roy R, Hinduja S, Teti R. Recent advances in engineering design optimisation: challenges and future trends[J]. Manufacturing Technology, 2008, 57(2): 697-715.
|
[6] |
Horn J, Nafploitis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization[C]Proceedings of the First IEEE Conference on Evolutionary Computation. NJ: IEEE Press, 1994: 82-87.
|
[7] |
Knowles J, Corne D. The Pareto archived evolution strategy: a new baseline algorithm for multi-objective optimization[C] Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1999: 98-105.
|
[8] |
Kim M, Hiroyasu T, Miki M, Watanabe S. SPEA2+: Improving the performance of the strength Pareto evolutionary algorithm 2[C]Proceedings of 8th International Conference on Parallel Problem Solving From Nature. Birmingham, UK, 2004: 742-751.
|
[9] |
Watanabe S, Hiroyasu T, Miki M. NCGA: neighborhood cultivation genetic algorithm for multi-objective optimization problems[C]Proceedings of the Genetic and Evolutionary Compution Conference(GECCO’2002), 2002: 458-465.
|
[10] |
Deb K, Agrawal S, Pratab A, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective: NSGA-Ⅱ[J]. Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
|
[11] |
Srinivas N, Deb K. Multi-objective optimization using non-dominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248. doi: 10.1162/evco.1994.2.3.221
|
[12] |
Deb K, Agrawal R B. Simulated binary crossover for continuous search space[J]. Complex Syst, 1995, 3(9): 115-148.
|
[13] |
Deb K, Goel T. Controlled elitist non-dominated sorting genetic algorithms for better convergence[C]Proceedings of First International Conference on Evolutionary Multi-Criterion Optimization. Zurich, Switzerland, 2001: 67-81.
|
[14] |
LUO Biao, ZHENG Jin-hua, XIE Jiong-liang, WU Jun. Dynamic crowding distance—a new diversity maintenance strategy for MOEAs[C]Proceedings of the IEEE International Conference on Natural Computation. NJ: IEEE Press,2008: 580-585.
|
[15] |
Par J, Kima J, Shina Y, Leea J, Parka J. 3 MW class offshore wind turbine development[J]. Current Applied Physics, 2010, 10(2): 307-310. doi: 10.1016/j.cap.2009.11.032
|
[16] |
Griffin D A, Zuteck M D. Scaling of composite wind turbine blades for rotors of 80 to 120 meter diameter[J]. Journal of Solar Energy Engineering, 2001, 123(4): 310-319. doi: 10.1115/1.1413215
|
[17] |
Bossanyi E A. Wind turbine control for load reduction[J]. Wind Energy, 2003, 6(2): 229-244. doi: 10.1002/we.95
|
[18] |
DAI Chang-hui, TANG Rui-yuan, WANG Tang-guang. Prediction of aerodynamic performance of a horizontal-axis rotor in condition of wind shear[C]Proc Asian and Pacific Wind Energy Conf, 1988.
|
[19] |
Lindenburg C. Aeroelastic Analysis of the LMH64-5 Blade Concept[M]. New York: Addison-Wesley, 2003.
|
[20] |
Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, National Renewable Energy Laboratory, 2009.
|