G. C. Shit, R. Haldar. Effect of Thermal Radiation on MHD Viscous Fluid Flow and Heat Transfer Over a Non-Linear Shrinking Porous Sheet[J]. Applied Mathematics and Mechanics, 2011, 32(6): 635-646. doi: 10.3879/j.issn.1000-0887.2011.06.001
Citation: G. C. Shit, R. Haldar. Effect of Thermal Radiation on MHD Viscous Fluid Flow and Heat Transfer Over a Non-Linear Shrinking Porous Sheet[J]. Applied Mathematics and Mechanics, 2011, 32(6): 635-646. doi: 10.3879/j.issn.1000-0887.2011.06.001

Effect of Thermal Radiation on MHD Viscous Fluid Flow and Heat Transfer Over a Non-Linear Shrinking Porous Sheet

doi: 10.3879/j.issn.1000-0887.2011.06.001
  • Received Date: 2010-02-09
  • Rev Recd Date: 2011-04-08
  • Publish Date: 2011-06-15
  • Of concern was an investigation of the effects of thermal radiation on magnetohydrodynamic (MHD)flow and heat transfer over a non-linear shrinking porous sheet.The surface velocity of the shrinking sheet and the transverse magnetic field were assumed to vary as a power function of the distance from the origin.The temperature dependent viscosity and the thermal conductivity were also assumed to vary as an inverse function and a linear function of the temperature respectively.A generalized similarity transformation was used to reduce the governing partial differential equations into its non-linear coupled ordinary differential equations and were solved numerically by using finite difference scheme.The numerical results concern with the velocity and temperature profiles as well as the skin-friction coefficient and the rate of heat transfer at the porous sheet for different values of the parameters of interest.
  • loading
  • [1]
    Fang T, Liang W, Lee C F. A new solution branch for the Blasius equation a shrinking sheet problem[J]. Computers and Mathematics With Applications, 2008,56(12):3088-3095. doi: 10.1016/j.camwa.2008.07.027
    [2]
    Hayat T, Javad T, Sajid M. Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface[J]. Physics Letters A, 2008,372(18) :3264-3273. doi: 10.1016/j.physleta.2008.01.069
    [3]
    Wang C Y. Stagnation flow towards a shrinking sheet[J]. International Journal of Non-Linear Mechanics, 2008,43(5):377-382. doi: 10.1016/j.ijnonlinmec.2007.12.021
    [4]
    Nadeem S, Awais M. Thin flim flow of an unsteady shrinking sheet through porous medium with variable viscosity[J]. Physics Letters A, 2008, 372(30): 4965-4972 . doi: 10.1016/j.physleta.2008.05.048
    [5]
    S·纳丁, A·候赛因. 同伦分析法求解非线性多孔收缩表面上黏性磁流体的流动[J]. 应用数学和力学, 2009,30(12): 1473-1481. (Nadeem S, Hussain A. MHD flow of a viscous fluid on a non-linear porous shrinking sheet with homotopy analysis method[J]. Applied Mathematics and Mechanics(English Edition), 2009,30(12): 1569-1578.)
    [6]
    Fang T. Boundary layer flow over a shrinking sheet with power-law velocity[J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 5838-5843. doi: 10.1016/j.ijheatmasstransfer.2008.04.067
    [7]
    Fang T, Zhang J. Closed-form exact solutions of MHD viscous flow over a shrinking sheet[J]. Communications in Non-Linear Science and Numerical Simulation, 2009,14(7): 2853-2857. doi: 10.1016/j.cnsns.2008.10.005
    [8]
    S·纳丁,安沃·胡塞因,M·Y·马立克,T·哈亚特. 具有收缩表面的二阶流体驻点流动的级数解[J]. 应用数学和力学, 2009,30(10): 1173-1180. (Nadeem S, Hussain A, Malik M Y, Hayat T. Series solutions for the stagnation flow of a second-grade fluid over a shrinking sheet[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(10): 1255-1262.)
    [9]
    M·R·坎达沙密,A·B·哈米什. 传热传质对有抽吸的收缩薄片上的非线性磁流体动力学边界层流动的影响[J]. 应用数学和力学, 2009,29(10): 1191-1198. (Muhaimin R K, Khamis A B. Effects of heat and mass transfer on non-linear MHD boundary layer flow over a shrinking sheet in the presence of suction[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(10): 1309-1317.)
    [10]
    Cortell R. Viscous flow and heat transfer overa non-linearly stretching sheet[J]. Applied Mathematics and Computation, 2007, 184(2): 864-873. doi: 10.1016/j.amc.2006.06.077
    [11]
    Sajid M, Hayat T, Asghar S, Vajravelu K. Analytical solution for axisymmetric flow over a non-linear stretching sheet[J]. Archive of Applied Mechanics, 2008, 78: 127-134. doi: 10.1007/s00419-007-0146-9
    [12]
    Prasad K V, Vajravelu K, Datti P S. The effect of variable fluid properties on the hydromagnetic flow and heat transfer over a non-linearly stretching sheet[J]. International Journal of Thermal Science, 2010, 49(3): 603-610. doi: 10.1016/j.ijthermalsci.2009.08.005
    [13]
    Prasad K V, Vajravelu K, Datti P S. Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties[J]. International Journal of Non-Linear Mechanics, 2010, 45(3): 320-330. doi: 10.1016/j.ijnonlinmec.2009.12.003
    [14]
    Raptis A, Perdikis C. Viscoelastic flow by the presence of radiation[J]. Journal of Applied Mathematics and Mechanics(ZAMM), 1998, 78(4): 277-279.
    [15]
    Mohamed R A, Abo-Dahab S M. Influence of chemical reaction and thermal radiation on the heat and mass transfer in MHD micropolar flow over a vertical moving porous plate in a porous medium with heat generation[J]. International Journal of Thermal Science, 2009,48(9): 1800-1813. doi: 10.1016/j.ijthermalsci.2009.01.019
    [16]
    Seddeek M A, Aboeldahab E M. Radiation effects on unsteady MHD free convection with Hall current near an infinite vertical porous plate[J]. International Journal of Mathematics and Mathematical Sciences, 2001, 26(4): 249-255. doi: 10.1155/S0161171201010031
    [17]
    Fang T, Zhang J. Thermal boundary layers over a shrinking sheet: an analytical solution[J]. Acta Mechanica, 2010, 209(3/4): 325-343. doi: 10.1007/s00707-009-0183-2
    [18]
    Lai F C, Kulacki F A. The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium[J]. International Journal of Heat and Mass Transfer, 1990, 33(5): 1028-1031. doi: 10.1016/0017-9310(90)90084-8
    [19]
    Chamakha A J. Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium[J]. International Journal of Engineering Science, 1997, 35(10/11): 975-986. doi: 10.1016/S0020-7225(96)00122-X
    [20]
    Chiam T C. Heat transfer with variable thermal conductivity in a stagnation point towards a stretching sheet[J]. International Communications in Heat and Mass Transfer, 1996,23(2): 239-248. doi: 10.1016/0735-1933(96)00009-7
    [21]
    Cebeci T, Cousteix J. Modeling and Computation of Boundary-Layer Flows[M]. Berlin: Springer-Verlag, 1999.
    [22]
    Misra J C, Shit G C. Flow of a biomagnetic viscoelastic fluid in a channel with stretching walls[J]. ASME Journal of Applied Mechanics, 2009, 76(6): 061006. doi: 10.1115/1.3130448
    [23]
    Misra J C, Shit G C, Rath H J. Flow and heat transfer of a MHD viscoelastic fluid in an channel with stretching wall: some application to hemodynamics[J]. Computers & Fluids,2008, 37(1): 1-11.
    [24]
    J·C·密斯让,A·辛哈,G·C·斯特. 生物磁粘弹性流体的流动:应用动脉电磁过热评估血液的流动,癌症治疗进程[J]. 应用数学和力学, 2010,31(11): 1330-1343.(Misra J C, Sinha A, Shit G C. Flow of a biomagnetic viscoelastic fluid: application to estimation of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure for cancer treatment[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(11):1405-1420.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1788) PDF downloads(728) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return