Anil K. Vashishth, Vishakha Gupta. Uniqueness Theorem,Theorem of Reciprocity and Eigen Value Problems in the Linear Theory of Porous Piezoelectricity[J]. Applied Mathematics and Mechanics, 2011, 32(4): 455-469. doi: 10.3879/j.issn.1000-0887.2011.04.008
Citation: Anil K. Vashishth, Vishakha Gupta. Uniqueness Theorem,Theorem of Reciprocity and Eigen Value Problems in the Linear Theory of Porous Piezoelectricity[J]. Applied Mathematics and Mechanics, 2011, 32(4): 455-469. doi: 10.3879/j.issn.1000-0887.2011.04.008

Uniqueness Theorem,Theorem of Reciprocity and Eigen Value Problems in the Linear Theory of Porous Piezoelectricity

doi: 10.3879/j.issn.1000-0887.2011.04.008
  • Received Date: 2010-09-20
  • Rev Recd Date: 2011-01-19
  • Publish Date: 2011-04-15
  • The uniqueness theorem and theorem of reciprocity in the linearized theory of porous piezoelectricity were established with the assumption of positive definiteness of elastic and electric field.General theorems in the linear theory of porous piezoelectric materials were proved for the quasi-static electric field approximation.The uniqueness theorem was also proved without using positive definiteness of elastic field.An eigen value problem,associated with free vibrations of porous piezoelectric body,was studied employing abstract formulation.Some properties of involved operators were also studied.The problem of frequency shift due to small disturbances,based on an abstract formulation,was studied using variational and operator approach.A perturbation analysis of a special case is also given.
  • loading
  • [1]
    Cady W G.Piezoelectricity[M]. New York: McGraw Hill Book Company, 1946:1-405.
    [2]
    Mason W P. Piezoelectric Crystals and Their Application to Ultrasonics[M]. Princeton, New York: D Van Nostrand Company, Inc, 1950: 1-502.
    [3]
    Tiersten H F. Linear Piezoelectric Plate Vibrations[M]. New York:Plenum Press, 1969:1-212.
    [4]
    Mindlin R D. High frequency vibrations of piezoelectric crystal plates[J]. International Journal of Solids and Structures,1972,8(7):895-906. doi: 10.1016/0020-7683(72)90004-2
    [5]
    Paul H S, Natarajan K. Flexural vibration in a finite piezoelectric circular cylinder of crystal class 6 mm[J]. International Journal of Engineering Science,1994,32(8):1303-1314. doi: 10.1016/0020-7225(94)90040-X
    [6]
    DING Hao-jiang, GUO Yi-mu, YANG Qing-da, CHEN Wei-qiu. Free vibration of piezoelectric cylindrical shells[J]. Acta Mechanica Solida Sinica,1997,10(1):48-55.
    [7]
    DING Hao-jiang, XU Rong-qiao, CHEN Wei-qui. Exact solutions for free vibration of transversely isotropic piezoelectric circular plates[J]. Acta Mechanica Sinica(English Series) , 2000, 16(2): 141-147.
    [8]
    Sabu N. Vibrations of thin piezoelectric flexural shells: two dimensional approximation[J]. Journal of Elasticity, 2002, 68(1/3): 145-165. doi: 10.1023/A:1026074730631
    [9]
    Davi F. Dynamics of linear piezoelectric rods[J]. Journal of Elasticity, 1997,46(3): 181-198. doi: 10.1023/A:1007359218368
    [10]
    Lioubimova E, Schiavone P. Steady state vibrations of an unbounded linear piezoelectric medium[J]. Z Angew Math Phys, 2006, 57(5): 862-874. doi: 10.1007/s00033-006-0071-8
    [11]
    Lioubimova E, Schiavone P. Steady state vibrations for the state of generalized plane strain in a linear piezoelectric medium[J]. International Journal of Engineering Science, 2006, 44(8/9): 471-483. doi: 10.1016/j.ijengsci.2006.04.006
    [12]
    Yang J S, Batra R C. Free vibrations of a piezoelectric body[J]. Journal of Elasticity, 1994, 34(3): 239-254. doi: 10.1007/BF00040766
    [13]
    Yang J. Free vibrations of an electrostatic body under biasing fields[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2005, 52: 358-364. doi: 10.1109/TUFFC.2005.1417257
    [14]
    Guo S. An eigen expression for piezoelectrically stiffened elastic and dielectric constants based on the static theory[J]. Acta Mechanica, 2010, 210(3/4): 345-350. doi: 10.1007/s00707-009-0223-y
    [15]
    Iesan D. Reciprocity, uniqueness and minimum principles in the linear theory of piezoelectricity[J]. International Journal of Engineering Science, 1990, 28(11): 1139-1149. doi: 10.1016/0020-7225(90)90113-W
    [16]
    Yang J S, Batra R C. Conservation laws in linear piezoelectricity[J].Engineering Fracture Mechanics, 1995, 51(6): 1041-1047. doi: 10.1016/0013-7944(94)00271-I
    [17]
    Craciun I A. Uniqueness theorem in the linear theory of piezoelectric micropolar thermoelasticity[J]. International Journal of Engineering Science, 1995, 33(7): 1027-1036. doi: 10.1016/0020-7225(94)00106-T
    [18]
    Iesan D, Quintanilla R. Some theorems in the theory of microstretch thermopiezoelectricity[J]. International Journal of Engineering Science, 2007, 45(1): 1-16. doi: 10.1016/j.ijengsci.2006.10.001
    [19]
    Karamany A S E. Uniqueness theorem and Hamilton’s principle in linear micropolar thermopiezoelctric/piezomagnetic continuum with two relaxation times[J]. Meccanica, 2009, 44(1): 47-59. doi: 10.1007/s11012-008-9144-4
    [20]
    Ciarletta M, Scalia A. Thermodynamic theory for porous piezoelectric materials[J]. Meccanica, 1993, 28(4): 303-308. doi: 10.1007/BF00987166
    [21]
    Hashimoto K Y, Yamaguchi M. Elastic, piezoelectric and dielectric properties of composite materials[J]. Proceeding IEEE Ultrasonics Symposium, 1986, 2: 697-702.10.1109/ULTSYM.1986.198824
    [22]
    Arai T, Ayusawa K, Sato H, Miyata T, Kawamura K, Kobayashi K. Properties of hydrophone with porous piezoelectric ceramics[J]. Japanese Journal of Applied Physics, 1991, 30: 2253-2255. doi: 10.1143/JJAP.30.2253
    [23]
    Mizumura K, Kurihara Y, Ohashi H, Kumamoto S, Okuno K. Porous piezoelectric ceramic transducer[J]. Japanese Journal of Applied Physics, 1991, 30: 2271-2273. doi: 10.1143/JJAP.30.2271
    [24]
    Hayashi T, Sugihara K, Okazaki K. Processing of porous 3-3 PZT ceramics using capsule-free O2 H P[J]. Japanese Journal of Applied Physics, 1991, 30: 2243-2246. doi: 10.1143/JJAP.30.2243
    [25]
    Xia Z, Ma S, Qui X, Wu Y, Wang F. Influence of porosity on the stability of charge and piezoelectricity for porous polytetrafluoroethylene film electrets[J]. Journal of Electrostatics, 2003, 59(1): 57-69. doi: 10.1016/S0304-3886(03)00089-5
    [26]
    Piazza D, Stoleriu L, Mitoseriu L, Stancu A, Galassi C. Characterization of porous PZT ceramics by first order reversal curves (FORC) diagrams[J]. Journal of the European Ceramic Society, 2006, 26(14): 2959- 2962. doi: 10.1016/j.jeurceramsoc.2006.02.026
    [27]
    Wang Q, Chen Q, Zhu J, Huang C, Darvell B W, Chen Z. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute[J]. Materials Chemistry and Physics, 2008, 109(2/3): 488-491. doi: 10.1016/j.matchemphys.2007.12.022
    [28]
    Banno H. Effects of porosity on dielectric, elastic and electromechanical properties of Pb(Zr,Ti)O3 ceramics with open pores: a theoretical approach[J]. Japanese Journal of Applied Physics, 1993, 32(9S): 4214-4217. doi: 10.1143/JJAP.32.4214
    [29]
    Lacour O, Lagier M, Sornette D. Effect of dynamic fluid compressibility and permeability on porous piezoelectric ceramics[J]. The Journal of the Acoustic Society of America, 1994, 96(6): 3548-3557. doi: 10.1121/1.410614
    [30]
    Gomez T E, Montero F. Highly coupled dielectric behavior of porous ceramics embedding a polymer[J]. Applied Physics Letters, 1996, 68(2): 263-265. doi: 10.1063/1.115657
    [31]
    Vashishth A K, Gupta V. Vibration of porous piezoelectric plates[J]. Journal of Sound and Vibration, 2009, 325: 781-797. doi: 10.1016/j.jsv.2009.03.034
    [32]
    Vashishth A K, Gupta V. Wave propagation in transversely isotropic porous piezoelectric materials[J]. International Journal of Solids and Structures, 2009, 46(20): 3620-3632. doi: 10.1016/j.ijsolstr.2009.06.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1781) PDF downloads(766) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return