SONG Bao-jun, LOU Jie, WEN Qing-zhi. Modelling Two Different Therapy Strategies for Drug T-20 on HIV-1 Patients[J]. Applied Mathematics and Mechanics, 2011, 32(4): 400-416. doi: 10.3879/j.issn.1000-0887.2011.04.004
Citation: SONG Bao-jun, LOU Jie, WEN Qing-zhi. Modelling Two Different Therapy Strategies for Drug T-20 on HIV-1 Patients[J]. Applied Mathematics and Mechanics, 2011, 32(4): 400-416. doi: 10.3879/j.issn.1000-0887.2011.04.004

Modelling Two Different Therapy Strategies for Drug T-20 on HIV-1 Patients

doi: 10.3879/j.issn.1000-0887.2011.04.004
  • Received Date: 2010-05-10
  • Rev Recd Date: 2011-02-21
  • Publish Date: 2011-04-15
  • A mathematical model that describes the antiretroviral therapy of the fusion inhibitor enfuvirtide on HIV-1 patients and the effect of enfuvirtide (formerly T-20) using impulsive differential equations were developed,taking into account two different drug elimination kinetics:first order and Michaelis-Menten.The model was a non-autonomous system of differential equations.For the time-dependent system,the disease-free equilibrium and its stability when therapy was taken with perfect adherence were focused on.Analytical thresholds for dosage and dosing intervals were determined to ensure that the disease-free equilibrium remains stable.The effects of supervised treatment interruption were also explored.It is shown that supervised treatment interruption may be worse than no therapy at all,thus strongly supporting no interruption strategies.
  • loading
  • [1]
    Moyle G. Stopping HIV fusion with enfuvirtide: the first step to extracellular HAART[J]. Journal of Antimicrobial Chemotherapy, 2003, 51(2): 213-217. doi: 10.1093/jac/dkg066
    [2]
    Trottier B, Walmsley S. Safety of enfuvirtide in combination with an optimized background of antiretrovirals in treatment-experienced HIV-1-infected adults over 48 weeks[J]. Journal of Acquired Immune Deficiency Syndrome, 2005, 40(4): 413-421. doi: 10.1097/01.qai.0000185313.48933.2c
    [3]
    Liu S W, Wu S G, Jiang S B. Advancement in developing a new class of anti-AIDS drugs: HIV entry inhibitors[J]. Chinese Pharmacological Bulletin, 2005, 21(9): 1034-1040.
    [4]
    Castagna A, Biswas P, Beretta P, Lazzarin A. The appealing story of HIV entry inhibitors from discovery of biological mechanisms to drug development[J]. Drugs, 2005, 65(7): 879-904. doi: 10.2165/00003495-200565070-00001
    [5]
    Clotet B, Raffi F, Cooper D, Delfraissy J F, Lazzarin A, Moyle G, Rockstroh J, Soriano V, Schapiro J. Clinical management of treatment-experienced, HIV-infected patients with the fusion inhibitor enfuvirtide: consensus recommendations[J]. AIDS, 2004, 18(8): 1137-1146. doi: 10.1097/00002030-200405210-00007
    [6]
    Perelson A S, Kirschner D E, Boer R D. Dynamics of HIV infection of CD4+ T cells[J]. Mathe Bios, 1992, 114(1): 81-125.
    [7]
    Perelson A S. Modeling the Interaction of the Immue System With HIV. Mathematical and Statistical Approaches to AIDS Epidemiology[M]. Berlin: Springer, 1989: 350-370.
    [8]
    Perelson A S, Nelson P W. Mathematical analysis of HIV-1 dynamics in vivio[J]. SIAM Rev, 1999, 41(1): 3-44. doi: 10.1137/S0036144598335107
    [9]
    Nowak M A, Bonhoeffer S, Shaw G M, May R M. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell population[J]. J Theor Biol, 1997, 184(2): 203-221. doi: 10.1006/jtbi.1996.0307
    [10]
    Smith R J, Wahl L M. Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects[J]. Bulletin of Mathematical Biology, 2005, 67(4): 783-813. doi: 10.1016/j.bulm.2004.10.004
    [11]
    Smith R J, Wahl L M. Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects[J]. Bulletin of Mathematical Biology, 2004, 66(5): 1259-1283. doi: 10.1016/j.bulm.2003.12.004
    [12]
    Smith R J. Adherence to antiretroviral HIV drugs: how many doses can you miss before resistance emerges? [J]. Proc R Soc B, 2006, 273(1586): 617-624. doi: 10.1098/rspb.2005.3352
    [13]
    Wein L M, D’Amato R M, Perelson A S.Mathematical analysis of antiretroviral therapy aimed at HIV-1: eradication or maintenance of low viral loads[J]. J Theor Biol, 1988, 192(1): 81-98.
    [14]
    Nowak M A, May R M. Virus Dynamics[M]. Oxford:Oxford University Press, 2000.
    [15]
    Nelson P W, Murray J D, Perelson A S. A model of HIV-1 pathogenesis that includes an intracellular delay[J]. Math Biosci, 2000, 163(2): 201-215. doi: 10.1016/S0025-5564(99)00055-3
    [16]
    Wolfgang H, McNerney G P, Chen P, Dale B M, Gordon R E, Chuang F Y S, Li X, Asmuth D M, Huser T, Chen B K. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses[J]. Science, 2009, 323(5922): 1743-1747. doi: 10.1126/science.1167525
    [17]
    Lifson J D, Feinberg M B, Reyes G R, Rabin L, Banapour B, Chakrabarti S, Moss B, Wong-Staal F, Steimer K S, Engleman E G. Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein[J].Nature, 1986, 323(6090): 725-728. doi: 10.1038/323725a0
    [18]
    Sodroski J, Goh W C, Rosen C, Campbell K, Haseltine W A. Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity[J]. Nature, 1986, 322(6078): 470-474. doi: 10.1038/322470a0
    [19]
    Levy J. HIV and the Pathogenesis of AIDS[M]. Washington DC: American Society for Microbiology, 2007.
    [20]
    Sato H, Orenstein J, Dimitrov D, Martin M. Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles[J]. Virology, 1992, 186(2): 712-724. doi: 10.1016/0042-6822(92)90038-Q
    [21]
    Csajka C, Verotta D. Pharmacokinetic-pharmacodynamic modelling: history and perspectives[J]. J Pharmacokin Biopharm, 2006, 33(3): 227-279.
    [22]
    Wagner J G. A modern view of pharmacokinetics[J]. J Pharmacokin Biopharm, 1973: 1(5): 363-401.
    [23]
    Wen Q, LOU Jie. The global dynamics of a model about HIV-1 infection in vivo[J]. Ricerche di Matematica, 2009, 58(1): 77-90. doi: 10.1007/s11587-009-0048-y
    [24]
    Ma Z, Song B, Hallam T G. The threshold of survival for systems in a fluctuating environment[J]. Bull Math Biol, 1989, 51(3): 311-323.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1639) PDF downloads(833) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return