Citation: | T. Hayat, M. Nawaz, S. Obaidat. Axisymmetric Magnetohydrodynamic flow of a Micropolar Fluid Between Unsteady Stretching Surfaces[J]. Applied Mathematics and Mechanics, 2011, 32(3): 344-356. doi: 10.3879/j.issn.1000-0887.2011.03.010 |
[1] |
Eringen A C. Theory of micropolar fluids[J]. J Math, 1966, 16(1): 1-18.
|
[2] |
Gorla R S R, Mansour M A, Mohammedien A A. Combined convection in an axisymmetric stagnation flow of micropolar fluid[J]. Int J Num Meth Heat Fluid Flow, 1996, 6(4): 47-55.
|
[3] |
Gorla R S R, Takhar H S. Boundary layer flow of micropolar fluid on rotating axisymmetric surfaces with a concentrated heat source[J]. Acta Mechanica, 1994, 105(1/4): 1-10. doi: 10.1007/BF01183937
|
[4] |
Guram G S, Smith A C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Compu Math Appl, 1980, 6(2): 213-233.
|
[5] |
Kumari M, Nath G. Unsteady incompressible boundary layer flow of a micropolar fluid at a stagnation point[J]. Int J Eng Sci, 1984, 22(16): 755-768. doi: 10.1016/0020-7225(84)90048-X
|
[6] |
Abdullah I, Amin N. A micropolar fluid model of blood flow through a tapered artery with a stenosis[J]. Mathematical Methods in the Applied Sciences, 2010, 33(16): 1910-1923.doi: 10.1002/mma.1303.
|
[7] |
Seddeek M A. Flow of a magneto-micropolar fluid past a continuously moving plate[J]. Phy Lett A, 2003, 306(4): 255-257. doi: 10.1016/S0375-9601(02)01513-X
|
[8] |
Nazar R, Amin N, Filip D, Pop I. Stagnation point flow of a micropolar fluid towards a stretching sheet[J]. Int J Non-Linear Mech, 2004, 39(7): 1227-1235. doi: 10.1016/j.ijnonlinmec.2003.08.007
|
[9] |
Takhar H S, Bhargava R, Agrawal R S, Balaji A V S. Finite element solution of a micropolar fluid flow and heat transfer between two porous discs[J]. Int J Eng Sci, 2000, 38(17):1907-1922. doi: 10.1016/S0020-7225(00)00019-7
|
[10] |
Abo-Eldahab E M, Ghonaim A F. Radiation effects on heat transfer of a micropolar fluid through a porous medium[J]. Appl Math Comp, 2005, 169(1):500-510. doi: 10.1016/j.amc.2004.09.059
|
[11] |
Nazar R, Amin N, Pop I. Free convection boundary layer flow on an isothermal sphere in a micropolar fluid[J]. Int Comm Heat Mass Trans, 2002, 29:377-386. doi: 10.1016/S0735-1933(02)00327-5
|
[12] |
Sahoo B. Effects of partial slip on axisymmetric flow of an electrically conducting viscoelastic fluid past a stretching sheet[J]. Cent Eur J Phys, 2010, 8(3):498-508. doi: 10.2478/s11534-009-0105-x
|
[13] |
萨胡 B. 二阶流体通过径向伸展平面时滑移、黏性耗散、焦耳热对MHD流动的影响[J]. 应用数学和力学,2010, 31(2): 150-162. (Sahoo B. Effects of slip, viscous dissipation and Joule heating on the MHD flow and heat transfer of a second grade fluid past a radially stretching sheet[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(2):159-173.)
|
[14] |
Hayat T, Nawaz M. Effect of heat transfer on magnetohydrodynamic axisymmetric flow between two stretching sheets[J]. Z Naturforsch, 2010, 65(11):1-8.
|
[15] |
Liao S J. Beyond Perturbation: Introduction to Homotopy Analysis Method[M]. Boca Raton: Chapman and Hall CRC Press, 2003.
|
[16] |
Liao S J. Notes on the homotopy analysis method: some definitions and theorems[J]. Comm Nonlinear Sci Num Simu, 2009, 14(4): 983-997. doi: 10.1016/j.cnsns.2008.04.013
|
[17] |
Liao S J. A new branch of solutions of unsteady boundary layer flows over an impermeable stretched plate[J]. Int J Heat Mass Transfer, 2005, 48(12): 2529-2539. doi: 10.1016/j.ijheatmasstransfer.2005.01.005
|
[18] |
Cheng J, Liao S J. Series solutions of nano-boundary layer flows by means of the homotopy analysis method[J]. J Math Anal Appl, 2008, 343(1): 233-245. doi: 10.1016/j.jmaa.2008.01.050
|
[19] |
Abbasbandy S. Homotopy analysis method for the Kawahara equation[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 307-310.
|
[20] |
Abbasbandy S, Hayat T. Solution of the MHD Falkner-Skan flow by homotopy analysis method[J]. Comm Nonlinear Sci Num Simu, 2009, 14(9/10): 3591-3598. doi: 10.1016/j.cnsns.2009.01.030
|
[21] |
Abbasbandy S, Shirzadi A. A new application of the homotopy analysis method: Solving the Sturm—Liouville problems[J]. Comm Nonlinear Sci Num Simu, 2011, 16(1): 112-126. doi: 10.1016/j.cnsns.2010.04.004
|
[22] |
Hashim I, Abdulaziz O, Momani S. Homotopy analysis method for fractional IVPs[J]. Comm Nonlinear Sci Numer Simu, 2009, 14(3): 674-684.
|
[23] |
Bataineh A S, Noorani M S M, Hashim I. On a new reliable modification of homotopy analysis method[J]. Comm Nonlinear Sci Numer Simu, 2009, 14(2): 409-423. doi: 10.1016/j.cnsns.2007.10.007
|
[24] |
Bataineh A S, Noorani M S M, Hashim I. Modified homotopy analysis method for solving systems of second-order BVPs[J]. Comm Nonlinear Sci Num Simu, 2009, 14(2): 430-442. doi: 10.1016/j.cnsns.2007.09.012
|
[25] |
Allan F M. Derivation of the Adomian decomposition method using the homotopy analysis method[J]. Appl Math Comp, 2007, 190(1): 6-14. doi: 10.1016/j.amc.2006.12.074
|
[26] |
Hayat T, Nawaz M. Soret and Dufour effects on the mixed convection flow of a second grade fluid subject to Hall and ion-slip currents[J]. Int J Num Methods Fluids. doi: 10.1002/fld.2405.
|
[27] |
Hayat T, Qasim M, Abbas Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet[J]. Z Naturforch A, 2010, 65(3): 231-239.
|
[28] |
Hayat T, Mustafa M, Pop I. Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid[J]. Comm Nonlinear Sci Num Simu, 2010, 15(5):1183-1196. doi: 10.1016/j.cnsns.2009.05.062
|
[29] |
Hayat T, Nawaz M. Magnetohydrodynamic three-dimensional flow of a second-grade fluid with heat transfer[J]. Z Naturforsch A, 2010, 65(8): 683-691.
|
[30] |
Hayat T, Nawaz M. Hall and ion-slip effects on three-dimensional flow of a second grade fluid[J]. Int J Num Methods Fluids. doi: 10.1002/fld.2251.
|
[31] |
Hayat T, Awais M. Three-dimensional flow of an upper-convected Maxwell (UCM) fluid[J]. Int J Num Methods Fluids. doi: 10.1002/fld.2289.
|
[32] |
Hayat T, Mustafa M, Mesloub S. Mixed convection boundary layer flow over a stretching surface filled with a Maxwell fluid in the presence of Soret and Dufour’s effects[J]. Z Naturforsch A , 2010, 65(5):401-410.
|