Citation: | ZHAO Yong, ZONG Zhi, LI Zhang-rui. Shock Calculation Based on Second Viscosity Using Localized Differential Quadrature Method[J]. Applied Mathematics and Mechanics, 2011, 32(3): 333-343. doi: 10.3879/j.issn.1000-0887.2011.03.009 |
[1] |
Gary J. On certain finite difference schemes for hyperbolic systems[J]. Mathematics of Computation, 1964, 18(85):1-18.
|
[2] |
Harten A. High resolution schemes for hyperbolic conservation laws[J].Journal of Computational Physics,1983,49:357-393. doi: 10.1016/0021-9991(83)90136-5
|
[3] |
Harten A, Osher S. Uniformly high order accurate non-oscillatory schemes[J]. SIAM Journal on Numerical Analysis,1987, 24(2):279-309. doi: 10.1137/0724022
|
[4] |
张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报,1988,6(2):143-164.(ZHANG Han-xin. Non-oscillatory and non-free-parameter dissipation difference scheme[J].Acta Aerodynamica Sinica, 1988, 6 (2):143-164.(in Chinese))
|
[5] |
von Neumann J, Richtmyer R D. A method for the numerical calculation of hydrodynamic shocks[J]. Journal of Applied Physics, 1950, 21(3):232-237. doi: 10.1063/1.1699639
|
[6] |
袁湘江,周恒.计算激波的高精度数值方法[J].应用数学和力学,2000,21(5): 441-450.(YUAN Xiang-jiang, ZHOU Heng. Numerical schemes with high order of accuracy for the computation of shock wave[J].Applied Mathematics and Mechanics(English Edition),2000,21(5):489-500.)
|
[7] |
涂国华,袁湘江,陆利蓬.激波捕捉差分方法研究[J].应用数学和力学, 2007, 28(4): 433-439. (TU Guo-hua, YUAN Xiang-jiang, LU Li-peng. Developing shock-capturing difference methods[J]. Applied Mathematics and Mechanics(English Edition), 2007, 28(4):477-486.)
|
[8] |
Bellman R E, Kashef B G, Casti J. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations[J]. Journal of Computational Physics, 1972, 10(1):40-52. doi: 10.1016/0021-9991(72)90089-7
|
[9] |
Shu C. Differential Quadrature and Its Applications in Engineering[M]. Springer: Berlin, 2000: 340-346.
|
[10] |
Civian F, Sliepcevich C M. Differential quadrature for multidimensional problems[J]. Journal of Mathematical Analysis and Applications,1984, 101(2):423-443. doi: 10.1016/0022-247X(84)90111-2
|
[11] |
Zong Z, Lam K Y. A localized differential quadrature method and its application to the 2D wave equation[J]. Computational Mechanics,2002, 29(4/5):382-391. doi: 10.1007/s00466-002-0349-4
|
[12] |
Lam K Y, Zhang J, Zong Z A numerical study of wave propagation in a poroelastic medium by use of localized differential quadrature method[J]. Applied Mathematical Modelling, 2004, 28(5): 487-511.
|
[13] |
Landau L D, Lifshitz E M. Fluid Mechanics[M].2nd Ed. Butterworth:Heinemann, 1999.
|
[14] |
Stokes G G. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids[J]. Transactions of the Cambridge Philosophical Society, 1845,8(22):287-342.
|
[15] |
Vincenti W G, Kruger C H, Jr. Introduction to Physical Gas Dynamics[M]. Malabar, FL:Krieger, 1965: 407-412.
|
[16] |
Anderson J D, Jr. Fundamentals of Aerodynamics[M]. New York: McGraw-Hill, 1984:649- 650.
|
[17] |
Rick E G, Brian M A. Bulk viscosity: past to present[J]. Journal of Thermophysics and Heat Transfer,1999, 13(3):337-342. doi: 10.2514/2.6443
|
[18] |
Sod G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics,1978, 27(1):1-31. doi: 10.1016/0021-9991(78)90023-2
|
[19] |
Zong Z, Zhang Y Y. Advanced Differential Quadrature Methods[M]. Boca Raton: Chapman and Hall CRC Press, 2009: 189-208.
|
[20] |
Samuel J M. Evaluating the second coefficient of viscosity from sound dispersion or absorption data[J]. AIAA Journal,Technical notes,1990, 28:171-173.
|
[21] |
Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Berlin, Heidelberg:Springer, 1999:152-162.
|