S. Gupta, A. Chattopadhyay, D. K. Majhi. Effect of Rigid Boundary on Propagation of Torsional Surface Waves in Porous Elastic Layer[J]. Applied Mathematics and Mechanics, 2011, 32(3): 312-323. doi: 10.3879/j.issn.1000-0887.2011.03.007
Citation: S. Gupta, A. Chattopadhyay, D. K. Majhi. Effect of Rigid Boundary on Propagation of Torsional Surface Waves in Porous Elastic Layer[J]. Applied Mathematics and Mechanics, 2011, 32(3): 312-323. doi: 10.3879/j.issn.1000-0887.2011.03.007

Effect of Rigid Boundary on Propagation of Torsional Surface Waves in Porous Elastic Layer

doi: 10.3879/j.issn.1000-0887.2011.03.007
  • Received Date: 2010-05-07
  • Rev Recd Date: 2011-01-08
  • Publish Date: 2011-03-15
  • The effect of rigid boundary on the propagation of torsional surface waves in a porous elastic layer over a porous elastic half space was presented using the mechanics of the medium as derived by Cowin and Nunziato.The velocity equation was derived and the results were discussed.It is observed that there may be two torsional surface wave fronts in the medium whereas there exists three wave fronts of torsional surface waves in the absence of rigid boundary plane given by Dey et al(Tamkang Journal of Science and Engineering,2003,6(4):241-249.).The results also reveals that in the porous layer,the Love wave is also available along with the torsional surface waves.It is remarkable that phase speed of Love wave in a porous layer with rigid surface is different from that in a porous layer with a free surface.The torsional waves are observed to be dispersive in nature,and the velocity decreases as the frequency of oscillation increases.
  • loading
  • [1]
    Ewing W M, Jardetzky W S,Press F. Elastic Waves in Layered Media[M]. New York: McGraw-Hill, 1957.
    [2]
    Dey S, Gupta A K, Gupta S. Torsional surface wave in nonhomogeneous and anisotropic medium[J]. Journal of Acoustical Society of America, 1996, 99(5): 2737-2741. doi: 10.1121/1.414815
    [3]
    Dey S, Dutta D. Torsional wave propagation in an initially stressed cylinder[J]. Proceedings of the Indian National Science Academy A, 1992, 58(5): 425-429.
    [4]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid—I low frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 168-178. doi: 10.1121/1.1908239
    [5]
    Biot M A, Willis D G. The Elastic coefficients of the theory of consolidation[J]. Journal of Applied Mechanics, 1957, 24:594-601.
    [6]
    Cowin S C, Nunziato J W. Linear elastic materials with voids[J]. Journal of Elasticity, 1983, 13(2): 125-147. doi: 10.1007/BF00041230
    [7]
    Goodman M A, Cowin S C. A continuum theory for granular materials[J]. Archive for Rational Mechanics and Analysis, 1972,44(4): 249-266.
    [8]
    Ciarletta M, Iesan D. Non-Classical Elastic Solids, Longman Scientific and Technical[M]. New York: Wiley, 1992.
    [9]
    Iesan D. Some theorems in the theory of elastic materials with voids[J]. Journal of Elasticity, 1985, 15(2): 215-224. doi: 10.1007/BF00041994
    [10]
    Nunziato J W, Cowin S C. A non-linear theory of elastic materials with voids[J]. Archive for Rational Mechanics and Analysis, 1979, 72(2): 175-201.
    [11]
    Puri P, Cowin S C. Plane waves in linear elastic materials with voids[J]. Journal of Elasticity, 1985, 15(2): 167-183. doi: 10.1007/BF00041991
    [12]
    Chandrasekharaiah D S. Effects of surface stresses and voids on Rayleigh waves in an elastic solid[J]. International Journal of Engineering Science, 1987, 25(2): 205-211. doi: 10.1016/0020-7225(87)90006-1
    [13]
    Parfitt V R, Eringen A C. Reflection of plane waves from flat boundary of a micropolar elastic half-space[J]. Journal of the Acoustical Society of America, 1969, 45(5): 1258-1272. doi: 10.1121/1.1911598
    [14]
    Tomar S K, Gogna M L. Reflection and refraction of coupled transverse and micro-rotational waves at an interface between two different micropolar elastic media in welded contact[J]. International Journal of Engineering Science, 1995, 33(4): 485-496. doi: 10.1016/0020-7225(94)00077-8
    [15]
    Singh B, Kumar R. Reflection and refraction of plane waves at an interface between micropolar elastic solid and viscoelastic solid[J]. International Journal of Engineering Science, 1998, 36(2): 119-135. doi: 10.1016/S0020-7225(97)00041-4
    [16]
    Midya G K. On Love-type surface waves in homogeneous micropolar elastic media[J]. International Journal of Engineering Science, 2004, 42(11/12): 1275-1288. doi: 10.1016/j.ijengsci.2004.03.002
    [17]
    Iesan D, Nappa L. Axially symmetric problems for a porous elastic solid[J]. International Journal of Solid and Structure, 2003, 40(20): 5271-5286. doi: 10.1016/S0020-7683(03)00229-4
    [18]
    Golamhossen F R. Propagation of waves in an elastic cylinder with voids[J]. Science and Technology, Research Journal,University of Mauritius, Réduit, Mauritius, 2000, 5: 43-52.
    [19]
    Wright T W. Elastic wave propagation through a material with voids[J]. Journal of Mechanics and Physics of Solids, 1998, 46(10): 2033-2047. doi: 10.1016/S0022-5096(98)00017-9
    [20]
    Dhaliwal R S, Wang J. Domain of influence theorem in the linear theory of elastic materials with voids[J]. International Journal of Engineering Science, 1994, 32(11): 1823-1828. doi: 10.1016/0020-7225(94)90111-2
    [21]
    Iesan D, Quintanilla R. Decay estimates and energy bounds for porous elastic cylinders[J]. Zeitschrift für Angewandte Mathematik und Physik, 1995,46(2): 268-281. doi: 10.1007/BF00944757
    [22]
    Quintanilla R. On uniqueness and continuous dependence in the nonlinear theory of mixtures of elastic solids with voids[J]. Mathematics and Mechanics of Solids, 2001, 6(3): 281-298. doi: 10.1177/108128650100600305
    [23]
    Dey S, Gupta S, Gupta A K. Torsional surface wave in an elastic half space with void pores[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(3): 197-204. doi: 10.1002/nag.1610170305
    [24]
    Dey S, Gupta S, Gupta A K, Kar S K, De P K. Propagation of torsional surface waves in an elastic layer with void pores over an elastic half-space with void pores[J]. Tamkang Journal of Science and Engineering, 2003, 6(4): 241-249.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1572) PDF downloads(656) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return