Citation: | YUAN Xue-gang, ZHANG Wen-zheng, ZHANG Hong-wu, ZHU Zheng-you. Stability Analysis of Radial Inflation of Incompressible Composite Rubber Tubes[J]. Applied Mathematics and Mechanics, 2011, 32(3): 286-292. doi: 10.3879/j.issn.1000-0887.2011.03.005 |
[1] |
Beatty M F. Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples[J]. Applied Mechanics Review, 1987, 40(12): 1699-1733. doi: 10.1115/1.3149545
|
[2] |
FU Yi-bin, Ogden R W. Nonlinear Elasticity: Theory and Applications[M]. London Mathematical Society Lecture Note Series, 2001, 283.
|
[3] |
Attard M M. Finite strain—isotropic hyperelasticity[J]. International Journal of Solids and Structures, 2003, 40(17): 4353-4378. doi: 10.1016/S0020-7683(03)00217-8
|
[4] |
Haughton D M, Kirkinis E. A comparison of stability and bifurcation criteria for inflated spherical elastic shells[J]. Math Mech Solids, 2003, 8(5): 561-572. doi: 10.1177/10812865030085008
|
[5] |
Horgan C O, Polignone D A. Cavitation in nonlinearly elastic solids: a review[J]. Applied Mechanics Review, 1995, 48(7): 471-485. doi: 10.1115/1.3005108
|
[6] |
Knowles J K. Large amplitude oscillations of a tube of incompressible elastic material[J]. Q Appl Math, 1960, 18(1): 71-77.
|
[7] |
任九生. 周期载荷下超弹性圆柱壳的动力响应[J]. 应用数学和力学, 2008, 29(10): 1199–1207.(REN Jiu-sheng.Dynamical response of hyper-elastic cylindrical shells under periodic load[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(10): 1319-1327.)
|
[8] |
YUAN Xue-gang, ZHANG Ruo-jing, ZHANG Hong-wu. Controllability conditions of finite oscillations of hyper-elastic cylindrical tubes composed of a class of ogden material models[J]. Computers, Materials & Continua, 2008, 7(3): 155-165.
|
[9] |
Chou-Wang M-S, Horgan C O. Void nucleation and growth for a class of incompressible nonlinear elastic materials[J]. International Journal of Solids and Structures, 1989, 25(11): 1239-1254. doi: 10.1016/0020-7683(89)90088-7
|