M. Vesković, V. Čović, A. Obradović. On the Instability of Equilibrium of Nonholonomic Systems With Dissipation and Circulatory Forces[J]. Applied Mathematics and Mechanics, 2011, 32(2): 202-212. doi: 10.3879/j.issn.1000-0887.2011.02.008
Citation: M. Vesković, V. Čović, A. Obradović. On the Instability of Equilibrium of Nonholonomic Systems With Dissipation and Circulatory Forces[J]. Applied Mathematics and Mechanics, 2011, 32(2): 202-212. doi: 10.3879/j.issn.1000-0887.2011.02.008

On the Instability of Equilibrium of Nonholonomic Systems With Dissipation and Circulatory Forces

doi: 10.3879/j.issn.1000-0887.2011.02.008
  • Received Date: 2010-09-21
  • Rev Recd Date: 2010-11-04
  • Publish Date: 2011-02-15
  • The equilibrium instability problem of the scleronomic nonholonomic systems acted upon by dissipative,conservative,circulatory forces was discussed. The applied methodology was based on the existence of solutions of differential equations of motion which asymptotically tend to the equilibrium state of the system,as t→-∞. It was assumed that the kinetic energy,the Rayleigh dissipation function,the positional forces in the neighborhood of the equilibrium position are infinitely differentiable functions. The results obtained,which partially generalize results from[V V Kozlov. On the asymptotic motions of systems with dissipation. Prikl Math Mekh,1994,58 (4):31-36. (in Russian);D R Merkin. Introduction to the Theory of the Stability of Motion. 1987,Moscow:Nauka. (in Russian);W Thomson,P Tait. Treatise on Natural Philosophy. Part Ⅰ. Cambridge University Press,1879],are illustrated by an example.
  • loading
  • [1]
    Karapetyan A V, Rumyantsev V V. Stability of conservative and dissipative systems[J]. Itogi Nauki i Tekhniki, Obshchaya Mekh, 1983, 6: 3-128. (in Russian)
    [2]
    Karapetyan A V. Stability of Steady Motions[M]. Moscow: Editorial URSS, 1998: 165. (in Russian)
    [3]
    梅凤翔,史荣昌,张永爱, 朱海平.约束力学系统的运动稳定性[M].北京: 北京理工大学出版社, 1997. (MEI Feng-xiang, SHI Rong-chang, ZHANG Yong-ai, ZHU Hai-ping. Stability of Motion of Constrained Mechanical Systems[M]. Beijing: Beijing Institute of Technology Press, 1997. )
    [4]
    梅凤翔.关于非线性非完整系统平衡状态的稳定性[J]. 科学通报, 1992,37 (1): 82-85. (MEI Feng-xiang. On stability of equilibrium states of nonlinear nonholonomic systems[J]. Chinese Science Bulletin, 1992, 37(1) 82-85.)
    [5]
    梅凤翔. On the stability of equilibria of nonlinear nonholonomic systems[J]. 科学通报, 1992, 37(16): 1397-1401. (MEI Feng-xiang. On the stability of equilibria of nonlinear nonholonomic systems[J]. Chinese Science Bulletin, 1992, 37(16): 1397-1401.)
    [6]
    朱海平,梅凤翔. 关于非完整力学系统相对部分变量的稳定性[J]. 应用数学和力学, 1995, 16(3): 225-233. (ZHU Hai-ping, MEI Feng-xiang. On the stability of nonholonomic mechanical systems with respect to partial variables[J]. Applied Mathematics and Mechanics(English Edition), 1995,16(3): 237-245.)
    [7]
    Shi R C, Mei F X, Zhu H P. On the stability of the motion of a Birkhoff system[J]. Mechanics Research Communications, 1994, 21(3): 269-272. doi: 10.1016/0093-6413(94)90077-9
    [8]
    Fu J L, Chen L Q, Luo Y, Luo S K. Stability for the equilibrium state manifold of relativistic Birkhoffian systems[J]. Chinese Physics, 2003, 12(4): 351-356. doi: 10.1088/1009-1963/12/4/301
    [9]
    Luo S K, Chen X W, Fu J L. Stability theorems for the equilibrium state manifold of non-holonomic systems in a noninertial reference frame[J]. Mechanics Research Communication, 2001, 28 (4): 463-469. doi: 10.1016/S0093-6413(01)00196-3
    [10]
    Kozlov V V. On the asymptotic motions of systems with dissipation[J]. Journal of Applied Mathematics and Mechanics, 1994, 58(5): 787-792. doi: 10.1016/0021-8928(94)90003-5
    [11]
    Kozlov V V, Furta S D. Asymptotics of Solutions for Strongly Nonlinear Systems of Differential Equations[M]. Regular and Chaotic Dynamics. Moscow-Izhevsk: Institute of Computer Science, 2009: 312. (in Russian)
    [12]
    Kozlov V V, Furta S D. Lyapunov’s first method for strongly non-linear systems[J]. Journal of Applied Mathematics and Mechanics, 1996, 60(1):7-18.(in Russian) doi: 10.1016/0021-8928(96)00003-2
    [13]
    Neimark J I, Fufaev N A. Dynamics of Nonholonomic Systems[M]. Providence, Rhode Island: Am Math Society, 1972.
    [14]
    Veskovic' M. On the equilibrium stability of mechanical systems with dissipation[J]. Theoretical and Applied Mechanics, 1998, 24: 139-154.
    [15]
    Cˇovic' V, Veskovic' M, Obradovic' A. On the instability of equilibrium of nonholonomic systems with nonhomogeneous constraints[J]. Mathematical and Computer Modeling, 2010, 51(9/10): 1097-1106. doi: 10.1016/j.mcm.2009.12.017
    [16]
    V·科维克, M·维什科维克, D·狄加瑞克, A·阿伯拉达维克. 非线性约束下非完整系统的平衡稳定性[J]. 应用数学和力学, 2010,31(6):722-730.(Cˇovic' V, Veskovic' M, D- uric' D, Obradovic' A. On the stability of equilibria of nonholonomic systems with nonlinear constraints[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(6): 751-760.)
    [17]
    Kozlov V V. On the stability of equilibria of non-holonomic systems[J]. Soviet Math Dokl, 1986,33(3): 654-656. (in Russian)
    [18]
    Kuznetsov A N. The existence of solutions of an autonomous system, recurring at a singular point, having a formal solution[J]. Funktsional’nyi Analiz i Yego Prilozheniya, 1989, 23(4): 63-74. (in Russian)
    [19]
    Lyapunov A M. The General Problem of the Stability of Motion[M]. 450. Khar’kov: Mat Obshch, 1892. (in Russian)
    [20]
    Merkin D R. Introduction to the Theory of the Stability of Motion[M]. Moscow: Nauka, 1987. (in Russian)
    [21]
    Veskovic' M. On the instability of equilibrium of non-holonomic systems with a non-analytic potential[J]. Int J Non-Linear Mechanics, 1996, 31(4): 459-463. doi: 10.1016/0020-7462(96)00010-8
    [22]
    Veskovic' M, Cˇovic' V. Lyapunov first method for nonholonomic systems with circulatory forces[J]. Mathematical and Computer Modeling, 2007, 45(9/10): 1145-1156. doi: 10.1016/j.mcm.2006.09.015
    [23]
    Sosnitskii S N. A certain case of equilibrium instability of nonholonomic voronets systems[J]. International Applied Mechanics, 1989, 25(10): 1040-1045.
    [24]
    Thomson W, Tait P. Treatise on Natural Philosophy: Part Ⅰ[M]. Cambridge: Cambridge University Press, 1879.
    [25]
    Cˇovic' V, Veskovic' M. Hagedorn’s theorem in some special cases of rheonomic systems[J]. Mechanics Research Communications, 2005, 32(3): 265-280. doi: 10.1016/j.mechrescom.2004.02.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1827) PDF downloads(767) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return