Mehdi Nikkhah, Farhang Honarvar, Ehsan Dehghan. Elastodynamic Solution for Plane-Strain Response of Functionally Graded Thick Hollow Cylinders by Analytical Method[J]. Applied Mathematics and Mechanics, 2011, 32(2): 180-193. doi: 10.3879/j.issn.1000-0887.2011.02.006
Citation: Mehdi Nikkhah, Farhang Honarvar, Ehsan Dehghan. Elastodynamic Solution for Plane-Strain Response of Functionally Graded Thick Hollow Cylinders by Analytical Method[J]. Applied Mathematics and Mechanics, 2011, 32(2): 180-193. doi: 10.3879/j.issn.1000-0887.2011.02.006

Elastodynamic Solution for Plane-Strain Response of Functionally Graded Thick Hollow Cylinders by Analytical Method

doi: 10.3879/j.issn.1000-0887.2011.02.006
  • Received Date: 2010-10-24
  • Rev Recd Date: 2010-11-22
  • Publish Date: 2011-02-15
  • An elastodynamic solution for the plane-strain response of functionally graded thick hollow cylinders subjected to uniformly-distributed dynamic pressures at the boundary surfaces,was presented. The material properties,except Poisson's ratio,were assumed to vary through the thickness following a power law function. To achieve an exact solution,the dynamic radial displacement was divided into two quasistatic and dynamic parts. For each part,an analytical solution was derived. Firstly,the quasi-static solution was obtained by means of Euler's equation,and then the dynamic solution was derived by utilizing the separation of variables method and the orthogonal expansion technique. Radial displacement and stress distributions were plotted for various FGM hollow cylinders under different dynamic loads and the advantages of the presented method were discussed. The presented analytical solution was suitable for analyzing various arrangements of FGM hollow cylinders with arbitrary thickness and arbitrary initial conditions, subjected to arbitrary form of dynamic pressures distributed uniformly at the boundary surfaces. Finally, radial displacement and stress distributions were plotted for various FGM hollow cylinders under different dynamic loads and the advantages of the presented method were considered.
  • loading
  • [1]
    Hirai T. Functional gradient materials[C] Brook R J. Processing of Ceramics, Part 2.Germany: VCH Verlagesgeslleschaft mbH Publishers, 1996.
    [2]
    Suresh S, Mortensen A. Fundamentals of Functionally Graded Materials[M]. London: IOM Communications, 1998.
    [3]
    Zimmerman R W, Lutz M P. Thermal stresses and effective thermal expansion in a uniformly heated functionally graded cylinder[J]. Journal of Thermal Stresses, 1999, 22(2): 177-188. doi: 10.1080/014957399280959
    [4]
    Jabbari M, Sohrabpour S, Eslami M R. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads[J]. International Journal of Pressure Vessels and Piping, 2002, 79(7): 493-497. doi: 10.1016/S0308-0161(02)00043-1
    [5]
    Shao Z S. Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length[J]. International Journal of Pressure Vessels and Piping, 2005, 82(3): 155-163. doi: 10.1016/j.ijpvp.2004.09.007
    [6]
    Xiang H J, Shi Z F, Zhang T T. Elastic analyses of heterogeneous hollow cylinders[J]. Mechanics Research Communications, 2006, 33(5): 681-691. doi: 10.1016/j.mechrescom.2006.01.005
    [7]
    Tutuncu N. Stresses in thick-walled FGM cylinders with exponentially-varying properties[J]. Engineering Structures, 2007, 29(9): 2032-2035. doi: 10.1016/j.engstruct.2006.12.003
    [8]
    Chen Y Z, Lin X Y. Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials[J]. Computational Materials Science, 2008, 44(2): 581-587. doi: 10.1016/j.commatsci.2008.04.018
    [9]
    Li X F, Peng X L. A pressurized functionally graded hollow cylinder with arbitrary varying material properties[J]. Journal of Elasticity, 2009,96(1): 81-95. doi: 10.1007/s10659-009-9199-z
    [10]
    Tutuncu N, Temel B. A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres[J]. Composite Structures, 2009, 91(3): 385-390. doi: 10.1016/j.compstruct.2009.06.009
    [11]
    Dai H L, Xiao X, Fu Y M. Analytical solutions of Stresses in functionally graded piezoelectric hollow structures[J]. Solid State Communications, 2010, 150(15/16): 763-767.
    [12]
    Chen Y Z, Lin X Y. An alternative numerical solution of thick-walled cylinders and spheres made of functionally graded materials[J]. Computational Materials Science, 2010, 48(3): 640-647. doi: 10.1016/j.commatsci.2010.02.033
    [13]
    Han X, Liu G R, Xi Z C, Lam K Y. Transient waves in a functionally graded cylinder[J]. International Journal of Solids and Structures, 2001, 38(17): 3021-3037. doi: 10.1016/S0020-7683(00)00219-5
    [14]
    Elmaimouni L, Lefebvre J E, Zhang V, Gryba T. Guided waves in radially graded cylinders: a polynomial approach[J]. NDT and E International, 2005, 38(5): 344-353. doi: 10.1016/j.ndteint.2004.10.004
    [15]
    Shakeri M, Akhlaghi M, Hoseini S M. Vibration and radial wave propagation in functionally graded thick hollow cylinder[J]. Composite Structures, 2006, 76(1/2): 174-181. doi: 10.1016/j.compstruct.2006.06.022
    [16]
    Bahtui A, Eslami M R. Coupled thermoelasticity of functionally graded cylindrical shells[J]. Mechanics Research Communications, 2007, 34(1): 1-18. doi: 10.1016/j.mechrescom.2005.09.003
    [17]
    Hoseini S M, Akhlaghi M, Shakeri M. Dynamic response and radial wave propagation velocity in thick hollow cylinders made of functionally graded materials[J]. Engineering Computations, 2007, 24(3): 288-303. doi: 10.1108/02644400710735043
    [18]
    Shariyat M. A nonlinear Hermitian transfinite element method for transient behavior analysis of hollow functionally graded cylinder with temperature-dependent materials under thermo-mechanical loads[J]. International Journal of Pressure Vessels and Piping, 2009, 86(4): 280-289. doi: 10.1016/j.ijpvp.2008.09.004
    [19]
    Asgari M, Akhlaghi M. Transient thermal stresses in two-dimensional functionally graded thick hollow cylinder with finite length[J]. Archive of Applied Mechanics, 2009, 80(4): 353-376.
    [20]
    Shahabian F, Hosseini S M. Stochastic dynamic analysis of a functionally graded thick hollow cylinder with uncertain material properties subjected to shock loading[J]. Materials and Design, 2010, 31(2): 894-901. doi: 10.1016/j.matdes.2009.07.040
    [21]
    Hosseini S M, Akhlaghi M, Shakeri M. Transient heat conduction in functionally graded thick hollow cylinder by analytical method[J]. Heat and Mass Transfer, 2007, 43(7): 669-675. doi: 10.1007/s00231-006-0158-y
    [22]
    Babaei M H, Chen Z T. Analytical solution for the electromechanical behavior of a rotating functionally graded piezoelectric hollow shaft[J]. Archive of Applied Mechanics, 2008, 78(7): 489-500. doi: 10.1007/s00419-007-0172-7
    [23]
    Yue Z Q, Yin X C. Transient plane-strain response of multilayered elastic cylinders to axisymmetric impulse[J]. Journal of Applied Mechanics, 2002, 69(6): 825-835. doi: 10.1115/1.1505625
    [24]
    Wang H M, Ding H J, Chen Y M. Dynamic solution of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane strain problems[J]. International Journal of Solids and Structures, 2005, 42(1): 85-102. doi: 10.1016/j.ijsolstr.2004.06.059
    [25]
    Bayat M, Sahari B B, Saleem M, Hamouda A M S, Reddy J N. Thermo elastic analysis of functionally graded rotating disks with temperature-dependant materials properties: uniform and variable thickness[J]. International Journal of Mechanics and Materials in Design, 2009, 5(3): 263-279. doi: 10.1007/s10999-009-9100-z
    [26]
    Hou P F, Wang H M, Ding H J. Analytical solution for axisymmetric plane strain electroelastic dynamics of a special non-homogenous piezoelectric hollow cylinder[J]. International Journal of Engineering Science, 2003, 41(16): 1849-1868. doi: 10.1016/S0020-7225(03)00115-0
    [27]
    Dai H L, Fu Y M. Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to dynamic loads[J]. International Journal of Pressure Vessels and Piping, 2007, 84(3): 132-138. doi: 10.1016/j.ijpvp.2006.10.001
    [28]
    Yu J G, Wu B, Chen G Q. Wave characteristics in functionally graded piezoelectric hollow cylinders[J]. Archive of Applied Mechanics, 2008, 79(9): 807-824.
    [29]
    Yin X C. Multiple impacts of two concentric hollow cylinders with zero clearance[J]. International Journal of Solids and Structures, 1997, 34(35/36): 4597-4616. doi: 10.1016/S0020-7683(97)00049-8
    [30]
    Yin X C, Wang L G. The effect of multiple impacts on the dynamics of an impact system[J]. Journal of Sound and Vibration, 1999, 228(5): 995-1015. doi: 10.1006/jsvi.1999.2439
    [31]
    Eringen A C, Suhubi E S. Elastodynamics[M]. Linear Theory. Vol 2. New York: Academic Press, 1975: 440-441.
    [32]
    Hough L A E. A Treatise on the Mathematical Theory of Elasticity[M]. New York: Dover, 1944.
    [33]
    Rade L, Westergren B. Mathematics Handbook for Science and Engineering[M]. 5th ed. Berlin: Springer-Verlag, 2004.
    [34]
    Gurtin M E. The Linear Theory of Elasticity, Mechanics of Solids[M]. 2nd ed. Berlin: Springer-Verlag, 1984: 270.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1554) PDF downloads(763) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return