ZHAO Lu-hai-bo, HU Guo-hui, ZHOU Zhe-wei. Linear Instability of Ultra-Thin Liquid Films Flowing Down a Cylindrical Fibre[J]. Applied Mathematics and Mechanics, 2011, 32(2): 127-134. doi: 10.3879/j.issn.1000-0887.2011.02.001
Citation: ZHAO Lu-hai-bo, HU Guo-hui, ZHOU Zhe-wei. Linear Instability of Ultra-Thin Liquid Films Flowing Down a Cylindrical Fibre[J]. Applied Mathematics and Mechanics, 2011, 32(2): 127-134. doi: 10.3879/j.issn.1000-0887.2011.02.001

Linear Instability of Ultra-Thin Liquid Films Flowing Down a Cylindrical Fibre

doi: 10.3879/j.issn.1000-0887.2011.02.001
  • Received Date: 2010-10-06
  • Rev Recd Date: 2010-12-07
  • Publish Date: 2011-02-15
  • The stability characteristics of an ultra-thin layer of viscous liquid flowing down a cylindrical fibre were investigated by linear theory. The film with a thickness less than 100 nm was driven by an external force,and under the influence of van der Waals forces. Results show that when the relative film thickness decreases,the curvature of the fibre depresses the development of the linear perturbations,whereas the van der Waals forces promote instabilities. This competition results in a non-monotonous dependence of the growth rate on the relative film thickness. The critical curves are also obtained to describe the transition from absolute to convective instability,which demonstrates that the van der Waals forces have the role of enlarging the absolutely unstable region. Furthermore,the surface tension is benefitial for the development of the absolute instability,whereas the external force plays an opposite effect.
  • loading
  • [1]
    Oron A, Davis S H, Bankoff S G. Long-scale evolution of thin liquid films[J]. Review Modern Physics, 1997, 69(3):931-980. doi: 10.1103/RevModPhys.69.931
    [2]
    Rayleigh Lord. On the stability of liquid jets[J].Proc Lond Math Soc, 1878, 10:4-18. doi: 10.1112/plms/s1-10.1.4
    [3]
    Kapitza P L, Kapitza S P. Wave flow of thin layers of a viscous fluid[J]. Zh Eksp Teor Fiz, 1949, 19: 105.
    [4]
    Eggers J. Nonlinear dynamics and breakup of free-surface flows[J]. Rev Mod Phys, 1997, 69(3): 865. doi: 10.1103/RevModPhys.69.865
    [5]
    Kliakhandler I L, Davis S H, Bankoff S G. Viscous beads on vertical fibre[J]. J Fluid Mech, 2001,429:381-390. doi: 10.1017/S0022112000003268
    [6]
    Duprat C, Ruyer-Quil C, Kalliadasis S, Giorgiutti-Dauphine F. Absolute and convective instabilities of a viscous film flowing down a vertical fiber[J]. Physical Review Letters, 2007,98(24): 244502. doi: 10.1103/PhysRevLett.98.244502
    [7]
    Frenkel A L. Nonlinear theory of strongly undulating thin films flowing down vertical cylinders[J]. Europhys Lett, 1992,18(7): 583-588. doi: 10.1209/0295-5075/18/7/003
    [8]
    Kalliadasis S, Chang H C. Drop formation during coating of vertical fibres[J].J Fluid Mech, 1994, 261:135-168. doi: 10.1017/S0022112094000297
    [9]
    Chang H C, Demekhin E A. Mechanism for drop formation on a coated vertical fibre[J].J Fluid Mech, 1999, 380:233-255. doi: 10.1017/S0022112098003632
    [10]
    Lin S P, Lin W C. Instability of film coating of wires and tubes[J]. AIChE J, 1975, 21(4): 775-782. doi: 10.1002/aic.690210420
    [11]
    Tougou H. Long waves on a film flow of a viscous fluid down the surface of a vertical cylinder[J]. J Phys Soc Jpn, 1977,43(1): 318-325 . doi: 10.1143/JPSJ.43.318
    [12]
    Craster R V, Matar O K. On viscous beads flowing down a vertical fibre[J]. J Fluid Mech, 2006, 553: 85-105. doi: 10.1017/S0022112006008706
    [13]
    Ruyer-Quil C, Treveleyan P, Giorgiutti-Dauphine F, Kalliadasis S. Modelling film flows down a fibre[J]. J Fluid Mech, 2008, 603: 431-462.
    [14]
    Berim G O, Ruckenstein E. Microscopic treatment of a barrel drop on fibers and nanofibers[J]. Journal of Colloid and Interface Science, 2005, 286(2): 681-695. doi: 10.1016/j.jcis.2005.02.028
    [15]
    Berim G O, Ruckenstein E. Cylindrical droplet on nanofibers: a step toward the clam-shell drop description[J]. J Phys Chem B, 2005, 109(46):12515-12524. doi: 10.1021/jp050021l
    [16]
    Huerre P, Monkewitz P A. Local and global instabilities in spatially developing flows[J]. Annu Rev Fluid Mech, 1990, 22:473-537. doi: 10.1146/annurev.fl.22.010190.002353
    [17]
    Brevdo L, Dias F, Bridges T J, Laure P. Linear pulse structure and signalling in a film flow on an inclined plane[J]. J Fluid Mech, 1999,396: 37-71. doi: 10.1017/S0022112099005790
    [18]
    Chang H-C, Demekhin E A. Complex Wave Dynamics on Thin Films[M].Amsterdam: Elsevier,2002: 412.
    [19]
    Leib S J, Goldstein M E. The generation of capillary instabilities on a liquid jet[J].J Fluid Mech, 1986, 168: 479-500. doi: 10.1017/S0022112086000472
    [20]
    尹协远, 孙德军. 旋涡流动的稳定性[M]. 北京:国防工业出版社, 2003.(YIN Xie-yuan, SUN De-jun. Vortex Stability[M]. Beijing: National Defensive Industry Press, 2003.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1709) PDF downloads(795) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return